

COMPONENT ORIENTED
SOFTWARE ENGINEERING

BY
ALI H. DOGRU

The Academy of Transdisciplinary Learning & Advance Studies

TheATLAS Publications

THEATLAS BOOK SERIES ON
TRANSDISCIPLINARY SCIENCE

© TheATLAS Publishing

TRANSDISCIPLINE: Integrating science and engineering principles

”...Today, complexity is a word that is much in fashion. We have learned very well
that many of the systems that we are trying to deal with in our contemporary science
and engineering are very complex indeed. They are so complex that it is not obvious
that the powerful tricks and procedures that served us for four centuries or more in
the development of modern science and engineering will enable us to understand and
deal with them. We are learning that we need a science of complex systems, and we
are beginning to construct it...”

 Nobel Laureate Herbert A. Simon

Keynote Speech, 2000 IDPT Conference

`

Copyright © by TheATLAS Publishing, 2006.

All rights reserved

ISBN 0-9778129-0-1

Published in the United States of America by

Author’s Foreword

The ever-expanding field of Software Engineering is in need of targeted
textbooks. Existing books are often too thick and full of more words than
necessary to express a concept, in addition to lacking in engineering substance.
This fact is especially a drawback when the audience is considered: usually the
third or fourth year undergraduate students confront the topic in the classrooms.
These students come from a line of deterministic small model manipulations and
all of a sudden they get introduced to social content - engineering approaches that
have a considerable “art” component, yet more: managerial considerations. Not
having appreciated the real difficulties in the industry, exposition to problems
that are neither tangible nor have unique or optimally correct solutions further
repels the novice reader. For the experienced engineers, the need for a concise
presentation in the text is preferred even more.

Another more important aspect of the evolving software engineering practice is a
need to shift the existing paradigm towards modern foundations. Young minds
should be freed of old restrictions inherited from primitive technologies. Now
there is sufficient hardware and conceptual maturity to devise methods merely
targeting the ideal. That is why the later chapters are dedicated to domain and
component orientation. We could not afford to selectively contain the
contemporary approaches in this book. The classical heritage should also be
conveyed even for the modern engineer at least to be able to relate to the existing
situation. Also the intention to utilize the content as a textbook (in addition to
introducing the innovations to the industry) necessitates the containment of the
common body of knowledge. The classical part displays some basic concepts
that are universal and will support the new orientations.

Is the extensive wording not justified? It is serving a purpose for sure. The
introductory software engineering book accommodates concepts more than
anything. This includes abstraction that in turn is a key instrument in sorting out
the terminology and their meanings. Describing such content is not easy in
limited space. Our intention is to present the introductory concepts concisely, in
the first chapter. As far as techniques are concerned, no matter how much detail
is introduced it will never be sufficient within the realm of a book. The
technologies find their extended definitions only in the industrial environments.

To sum up, the book is organized in three parts:
1. a summary of the traditional approaches,
2. modern approaches, and
3. case studies.

The first part can serve as a common textbook extending to the following part to
prepare the novice software engineer to the expected near future challenges. For
the experienced, the initial chapters will serve as a reference and the second part
offers an alternative paradigm with orders of magnitude improvement intended in

 iv

development performance. The new orientation is the natural, simple, as yet
powerful methodology other engineering disciplines have attained and are using
with success.

 v

TABLE OF CONTENTS

Chapter 1 Software Engineering Concepts ..1

1. 1 Introduction ...1

1. 2 Software..2
1.2.1 Types of Software ...3

1. 3 Software Engineering..4
1.3.1 Further sub-fields ..5
1.3.2 Relation with other fields ..7

1. 4 The process...8
1.4.1 Terminology..10
1.4.2 Other Process Models ...12

1. 5 Modeling Formalisms..14
1.5.1 Modeling emphasis in different approaches..15

1. 6 Selecting appropriate methodology ...16

1. 7 Summary ..17

1. 8 Questions ..18

1. 9 References ..19

Chapter 2 Software Project Management ..20

2. 1 Introduction ...20

2. 2 Project resources ...20
2.2.1 Human resources...21
2.2.2 Software and hardware resources..21

2. 3 Process Maturity..23

2. 4 Estimation and Metrics...24
2.4.1 Base for metrics ..25
2.4.2 Size Oriented Metrics..25
2.4.3 Empirical estimation ...27
2.4.4 Function Oriented Metrics ..28

 vi

2.4.5 Extensions to Function Points...30
2.4.6 Translating between the approaches ...30

2. 5 Scheduling ..31

2. 6 Staffing ...34

2. 7 Risk Management..36

2. 8 Quality ..36
2.8.1 Quality Factors..37
2.8.2 Statistical Quality Assurance ..39

2. 9 Software Acquisition ...39

2. 10 Configuration Management ...41

2. 11 Maintenance...41

2. 12 Summary ..42

2. 13 Questions ..43

2. 14 References ..44

Chapter 3 Traditional Software Development ...45

3. 1 Looking back..46

3. 2 Requirements ...46
3.2.1 Dataflow diagrams ..46
3.2.2 Control Flow Diagrams...50
3.2.3 Entity relationship diagrams ...54
3.2.4 Requirements dictionary ...55
3.2.5 Procedural specifications ..56

3. 3 Design ...57
3.3.1 Structural design ...58
3.3.2 Transform Mapping ..61

3. 4 Coding and Debugging..65
3.4.1 Comment lines and code formatting ...66
3.4.2 Structured programming ...66
3.4.3 Debugging...67

 vii

3. 5 Testing and integration ...67
3.5.1 Testing approaches..68
3.5.2 Basis path testing ..69
3.5.3 Other test types..73
3.5.4 Integration ...73

3. 6 Maintenance...75
3.6.1 Reengineering ...76

3. 7 Summary ..76

3. 8 Questions ..77

3. 9 References ..78

Chapter 4 Object Oriented Software Engineering79

4. 1 Object Orientation ..80
4.1.1 Object Based Environment ...82
4.1.2 Interaction ...82
4.1.3 Classification...83
4.1.4 Inheritance...84
4.1.5 Multiple inheritance ..85
4.1.6 Interfaces...86
4.1.7 Polymorphism ...88
4.1.8 Composition ..90

4. 2 Object Oriented Methodologies ...93
4.2.1 General approach ..93

4. 3 Requirements analysis and specification...96
4.3.1 Use case analysis...96
4.3.2 Class diagrams ..97
4.3.3 Interaction diagrams..99

4. 4 Design ...100
4.4.1 Design stages...102

4. 5 Coding ..103

4. 6 Summary ..106

4. 7 Questions ..107

4. 8 References ..107

 viii

Chapter 5 Introduction to Domain Oriented System Development.........109

5. 1 Introduction ...109
5.1.1 Domain Analysis in the developing Perspective...................................110
5.1.2 Justification for Domain Specific Development112
5.1.3 There is no free Reuse...116

5. 2 The Domain Oriented Process..118
5.2.1 Definition of a Domain ...118
5.2.2 Exploiting the Domain ..120
5.2.3 FODA..121
5.2.4 FORM ...122
5.2.5 Component Oriented Design...125
5.2.6 A Specifically Component Oriented Approach131
5.2.7 Domain Model to Development Medium ...134

5. 3 Summary ..135

5. 4 Questions ..135

5. 5 References ..136

Chapter 6 Component Oriented Software Engineering............................139

6. 1 Introduction ...139
6.1.1 Recent Trends ...140
6.1.2 Constituents of the new approach ...140
6.1.3 Component Oriented Process..144
6.1.4 Component Oriented Modeling Language..147

6. 2 Development...152
6.2.1 Requirements Specification ..153
6.2.2 Detail Design and Implementation..158
6.2.3 Some Guidelines ...162
6.2.4 Testing and Integration ...163

6. 3 Conclusions ..163

6. 4 Questions ..165

6. 5 References ..166

Chapter 7 Traditional Development of a Travel Reservation System167

7. 1 Introduction ...167

 ix

7. 2 Estimation ..167
7.2.1 Reservations ..168
7.2.2 Trips ..169
7.2.3 Calculating the Function Points ..169
7.2.4 Empirical estimations..170

7. 3 An early prototype for investigating requirements172

7. 4 Requirements Analysis..172
7.4.1 Entity Relationship diagrams ..175
7.4.2 Concluding the requirements model ...177

7. 5 Design ...177
7.5.1 Data Design...177
7.5.2 Refining the dataflow diagrams ..179
7.5.3 Structural design ...179

Chapter 8 Object Oriented Development of a Travel Reservation
System...186

8. 1 Introduction ...186

8. 2 More specifications..186

8. 3 Starting with the requirements modeling..187
8.3.1 Reservation system-function...194
8.3.2 Next use case...197
8.3.3 Return system function ...198
8.3.4 List trips system function..199

8. 4 Next Capability: trip management ..200
8.4.1 Bus List Maintenance..201
8.4.2 Trip list maintenance system function ..202

8. 5 Business automation capability ..205
8.5.1 Payroll processing system function...206
8.5.2 Accounting system function..206

8. 6 Final capability: client list ..207
8.6.1 Periodic mailing system function..208
8.6.2 Client Monitoring System Function..209

8. 7 Class diagrams...210

8. 8 Final comments on requirements model ...213

 x

8. 9 Design ...214
8.9.1 Objects revisited..214
8.9.2 Database interface ...217
8.9.3 Graphical user interface ..218

8. 10 Coding ..219

Chapter 9 Component Oriented Development of a Travel
Reservation System..221

9. 1 Introduction ...221

9. 2 The Domain..221
9.2.1 Domain Dictionary..222
9.2.2 Design Patterns ...224

9. 3 A Bus Reservation System ..226

9. 4 Implementation by Components ..231

9. 5 Scenario Changed..235

 xi

Component Oriented Software Engineering 1

Chapter 1
Chapter 1 Software Engineering Concepts

1. 1 Introduction
Few fields in the 21st Century are enjoying the popularity of Software
Engineering. The demand for software is increasing exponentially. Wider
populations are aware that every artifact will include software components
especially as its vital part, in the near future. Yet this attractive field of
engineering suffers growing pains due to its infancy and also is required to grow
a lot faster than others have grown in the history. Although lacking
infrastructure, techniques, and philosophies, improvement methods and tools for
software engineering are to be offered in a rush. Half a century is experienced
already after the introduction of the modern computer and yet no “silver bullet”,
or panacea, has emerged; the effort is continued for finding at least acceptable
steel bullets, or standard approaches for solving complex problems. Engineering
techniques can help in the more efficient development of bigger software without
requiring more resources - especially personnel. This chapter will introduce the
software engineering concepts that require the appreciation of the software crisis
phenomena that is partially reflected in Figure 1.1. This pessimistic sounding
introduction is not for discouragement; on the contrary it is expressed to expose
the importance of this new discipline. Engineers enjoy challenge, after all.

Figure 1 symbolizes the growing gap between the offer and demand in the
software market. Offer is assumed proportional to the number of computer
scientists and related engineers together with their capacity to develop software.

time

offer

demand

Figure 1.1 Software demand versus supply

Chapter 1 / Software Engineering Concepts 2

It is also known that software projects are usually behind schedule and over
budget. A majority of the projects result in failure. In the beginning, this could
have been due to the lack of engineering approach for the construction of big
software systems. Later, inadequacy, insufficiency and improper application of
engineering practices kept the failure to sustain itself as an accustomed property
of the field. The crisis has two sources:
1. Growing gap between demand and supply offering
2. High failure rates in supply offering.

Naturally searching for a solution, the software engineering field got established,
offered different concepts and methods, and even came up with improved
versions for the very definition of software. The struggle is still in progress. It
should also be noted that the improvement in the engineering practices is
shadowed by the increase in the complexity of the growing demand. This is the
reason for not being able to come up with acceptable levels of success despite
considerable improvement taking place in our engineering practices.

On the other hand, this complex problem brought with it a very different way of
thinking that is the exciting part of this new field. More control over abstractions
and devised mechanisms to handle complexity supported the software
professionals to attack the modern and serious problems incorporating high-
technology solutions. This kind of a merited expertise in turn propagated to other
engineering disciplines. Software professionals are usually very enthusiastic and
dedicated technicians in their jobs and they believe they are helping the society in
important ways. Rapid advances in Information Technology are making
improvements and impacting social life. A revolution is happening, faster than
those happened in history. The comparable phenomena are the invention of
writing, and then, printing press. The computational element (such as the
processor) took the initial credit as the major fueling log of this revolution. Soon,
it was software that made the hardware useful and was acknowledged as the
concept that holds the keys to this new transformation.

1. 2 Software
In the early days a program was called software. Today the definition is more
involved, having expanded over the years: documentation and data, as well as
the advanced understanding of the ‘code:’ system of programs. Small programs
that can be generated by one person in a week or a month are not within the
scope of software engineering. They still can be called programs. Problems
begin with the enormous complexity (size) of the software. Such a product
comes in a very complex package:
• documentation,
• training packages,
• maintenance options, and even
• personnel dedicated to help in its smooth operation!

Component Oriented Software Engineering 3

Software needs to be engineered as in the case of hardware we are more exposed
to; like a car, or a television set. Before programmers start coding there is so
much to do: the conception of the future product has to be investigated for
feasibility, then requirements must be defined, and a sophisticated design is
required to guide its implementation. After delivery, maintenance is a major
issue. All of this “lifecycle” process requires supervision: a project management
dimension that needs to be considered simultaneously with development.
Actually engineering efforts that define the success of the project are mostly the
ones that take place before implementation.

The software field brings a radically different concept after a line of different
hardware fields have matured in engineering history. For the first time, the
artifacts are not tangible; they are abstract systems of models. The cycle time for
a small idea from formation in the mind to realization, is comparable to seconds,
that is virtually zero when engineering practices are considered. Whereas in
Electrical Engineering this time can be measured by minutes, while in
Mechanical Engineering it can be measured by hours. Hardware products wear
out whereas software does not. Also, mass production is not of concern for
software; once it is developed, multiple copies can be created with ease, whereas
hardware requires a production engineering, as well as design. Such differences
necessitate special development care and technology for this new type of product.

1.2.1 Types of Software

There are different types of software and their development has to take into
account the characteristics of their class. Although this categorization could be
done with respect to different parameters, a list that contains the most frequently
mentioned classes, without any categorization, is presented below:
• Business software,
• System software,
• Real-time software,
• Embedded software, and
• Scientific/engineering software.

A big share belongs to the business category. A banking application or a student
course registration system would be in this group. System category includes the
software that is written for some general-purpose computer hardware and enables
its fundamental operation. Operating systems, some network or database
management system applications are considered system software. Real-time
software is generally fast. The requirement for an application to be real-time is
that it has to respond within a pre-determined time limit. If this response
requirement is real tight, then the term “hard-real-time” is used. Embedded
software is written for a specific hardware and is integrated into the system,
making the software an integral part of the machine. The scientific or
engineering kind of applications are usually mathematically complex and the
efficiency and correctness requirements account for the most of the complexity.

Chapter 1 / Software Engineering Concepts 4

Of course it is easy to extend this list for the contributors to complexity. One
other important property could be security. Security recently became a very
popular parameter, applying to many kinds of software, especially the ones
accessed over networks where unauthorized access needs to be prevented. A
safety-critical software assumes control functions that could be fatal if not
operating properly.

1. 3 Software Engineering
Software Engineering (SE) is one of the newest engineering disciplines today,
branching out of computer science which began to take shape in 1950. There are
two contradicting trends in the development of engineering fields. While a
narrowing in any specialization field is observed, the need for interdisciplinary
engineers is also growing. There is a constant definition of new fields of
engineering with quite a few being related to software. However, most of those
newly defined fields lack official and academic recognition. Now many
Bachelor of Science degree programs in SE exist, not to mention the graduate
programs. States grant professional engineer certificates in SE. Society of
Design and Process Science (SDPS) has established the first SE society. The
founding date can be accepted as 1970, about the time when the first engineering
approach was published and the first professional journal started as IEEE
Transactions on Software Engineering by professors C.V. Ramamoorthy and
R.T. Yeh. This acknowledgement process started a little earlier, and formally
discussed in the 1968 NATO conference on Software Engineering.

The field is involved with the approaches and techniques used in the
development of complex software projects. Software Engineers create and use
such tools. Development involves a variety of tasks such as the elicitation of
customer requirements, design of the solution, coding, testing, and maintenance.

Software engineering problems that are especially complex are referred to as
“wicked problems.” The most shocking property of such problems is that they
cannot be completely specified until they are completely solved. There appears
to be a bottleneck in the developer’s understanding of the requirements for the
project.

The deceivingly short conception-to-execution time causes an impression as if
software were flexible; a less-disciplined developer would rush to
implementations thinking that it would be easy to modify the system later. That
is why sometimes, although a solution for a given problem may be present
elsewhere, we want to start from scratch and with some over-confidence try to
build everything ourselves. On the contrary, it is generally very difficult and
increasingly more expensive to make changes as the project advances. Also
newly created code is full of risks; especially having the potential for housing
hidden errors as well as for extensive and difficult future modification. There is
a need for achieving what other engineering fields have already, in terms of
utilization of previously solved sub-problems. It is known that locating and

Component Oriented Software Engineering 5

integrating a previously written piece of code is more advantageous than to do it
all over again. The principle is described with the reuse concept which is finding
its best practice through the recently emerged “component” technologies. It can
be concluded that SE is about to change its attitude about reinventing the wheel
as common practice.

Difficult projects employ thousands of personnel, they may last nearly a decade
to complete, and they are of huge sizes measured sometimes by tens of millions
of lines of code. The costs can go up to hundreds of millions of dollars. Such a
complexity cannot be handled by a linear production approach for coding. Reuse
in different levels with higher-level tools to help with our intellectual control
over the system is required. If the complexity is not dealt with, it will not be
realistic to expect a successful termination of such projects in terms of
correctness, timeliness, and quality. There has been a constant search for finding
better tools, as the systematic approach has advanced considerably. Meanwhile,
the complexity and the demand also increased, rendering a non-satisfactory
improvement rate for success.

In the early days, computing sciences and related engineering were bound with
the limitations the primitive machines imposed. Later the complexity suggested
approaches that would enable better understanding of the problems – technology
was not expensive anymore and it was more important to establish correct
methods. Hardware technologies improved and software solutions were behind.
Now is the time for formulating the best approach to efficient development
procedures, rather than limiting ourselves to early hardware architectures.

1.3.1 Further sub-fields

As a major engineering field, SE also is composed of engineering fields defined
for more specific tasks. An important one to mention is “requirements
engineering.” It is not uncommon to run into position titles such as “test
engineer” and “design engineer” in the job advertisements. Despite its immature
status, a strong foundation is present for a valid engineering discipline that
corresponds to the biggest body of current problems.

It would be appropriate to classify the topics covered in SE into two major areas.
Development and management are the two separate kinds of activities that have
to be closely interwoven during a software projects lifecycle.

Software management is not very far from management science. This new field,
however, is more human-oriented. Any information system needs to consider the
human and organization dimensions on top of the technology dimension.
Especially software development is very dependent on the individuals and the
composition of the development team. Common management procedures are
involved. A quick system definition can be made following feasibility analysis,
and the project needs to be separated into tasks according to the system definition
with completion deadlines and resources allocated to them. Budgeting, staffing,
and tracking need to be performed. A critical procedure is the estimation of the

Chapter 1 / Software Engineering Concepts 6

cost, size, and development effort for the prospective system. All those
mentioned procedures have software-specific attributes that have to be mastered
for successful management.

Software development fundamentally being an engineering effort, displays some
subtle differences due to the peculiarities mentioned in the previous sections.
Understanding of the user definition is a major problem; that alone can be
detailed as a separate engineering field. First there is the gathering process for
requirements. Collected requirements should then be understood, analyzed and
modeled for saving and further articulation. Then, a definition of the solution in
terms of a design model follows. Coding, accounting for about 15% of the total
project effort, is accompanied by testing, debugging, and integration. There is
still maintenance to be carried out even after delivery. These activities could be
classified according to different parameters. For the novice software engineer,
probably it is interesting to base every activity on coding. Figure 1.2 depicts the
relative efforts coarsely corresponding to the activities: before coding, after
coding, and coding itself.

pre-coding
coding
post-coding

Figure 1.2 Effort distribution among development activities

Of course no activity alone should be recognized as the most important one, nor
should be ignored. Without coding, there cannot be any products. Recent ads
would list programming jobs as “software engineering” jobs. Most of the time,
the employers mean programmers, not software engineers. Probably they could
benefit from hiring real software engineers, who would conduct some
programming as well as other SE tasks. Nevertheless, programming can be
handled automatically to a considerable extent, today. Although it is important,
pre-coding activities are more important. For example, design is where almost
every parameter is fixed. The quality of the product is determined at this stage.
It is of course still possible to abuse the programming duty by producing low-

Component Oriented Software Engineering 7

quality code from a good design. Requirements stage is strategic. Big errors
made here if uncovered, are very likely candidates for jeopardizing the project.

This book’s emphasis slightly tilts towards the development activities with
further emphasis on requirements and design engineering. Some fundamental
concepts developed since the inception of the field need to be digested. These
are mostly related to the process that produces software, involving both
management and development aspects. That is why an introduction to such
concepts will be provided in the following sections, before the user is referred to
the development and management related chapters.

1.3.2 Relation with other fields

Complex systems require the collaboration of different engineering domains.
Most of the artifacts have a heavy software component. Besides having to define
the interaction among the software and hardware sub-systems, a holistic view is
necessary to yield a consistent product. Experience gathered along abstraction
exercises earned some privilege to software engineers. This very fact that SE
deals more with “abstractions” rather than tangible items now becomes a plus for
the first time. The plight for solving a problem at higher-levels of abstraction
had achieved some fruits in this field faster than it would in the other fields. The
ideas were then duplicated in some other fields. Examples to this phenomenon
are the Computer Aided Design (CAD) tools used in Electrical and Mechanical
Engineering fields. Such tools have moved from primitive geometries to
“features.” A related outcome is that programming is replacing other forms of
traditional design activities in such fields: now hardware engineers conduct their
design through coding. Also to be mentioned in the next section, the process for
development is manipulated as an important issue: Software Engineers have
offered tools for constructing processes. Now process modeling is in any
manufacturing or service industry.

Design is probably the basic engineering task. The psychological aspects of
design have been investigated to aid the developers in this complex task. Herb
Simon’s [1969] work has been seminal for designers in any field. Later another
question arose about the common denominator for all the design engineers –
could there be fundamental design procedures independent from the application
field? The abstract design notion [Tanik and Chan 1991] suggests that the earlier
stages in the design of complex systems can provide a positive answer to the
question. If the solution can be modeled disregarding the final implementation
technologies, these early stages of the design will be conducting abstract design.
Further articulating on this idea and its extension “system interface engineering”
[Tanik and Ertas 1997], we can benefit from a late assignment of a “development
domain” to any component. In other words, an established hardware/software
co-development will start a design without first determining what part is
mechanical, electrical or software. The more optimal solutions will develop in
the later design stages, hopefully through the help of intelligent tools in the

Chapter 1 / Software Engineering Concepts 8

future. The abstract design idea is actually a disciplined explanation of the
widely known “do not over-specify” principle.

1. 4 The process
A process is an ordered set of tasks to accomplish a goal. In our case, the goal is
the development and maintenance of software. The topic gained importance in
other engineering domains also. “Business Process Reengineering” is a phase
serious enterprises go through, before enacting any automation. Now there are
process consultants. Usually a systems-engineering effort is conducted that
considers hardware, software, and other operational aspects of the future product.
Then the scope of software engineering is demarcated, having its boundaries set
by systems engineering. The hardware component could be negligible so it is not
uncommon to see software engineers starting with this Systems Engineering
activity. Personnel involved in these early phases were called “systems
analysts.” Even in strictly software fields, requirements engineering is frequently
referred to as “system engineering.”

Process engineering asserted itself by the turn of the century following the
discovery that automating a system without process reengineering, may result in
speeding up an inefficient approach. Also, it was found that quality products
come out of quality processes and rather than establishing product quality
standards the quality organizations started to certify the quality of processes
within organizations. The leading process quality systems are the Capability
Maturity Model (CMM) from the Software Engineering Institute (SEI) of
Carnegie Mellon University, and the ISO 9000 series of standards from the
International Standards Organization. CMM is in more demand currently, and
other standards are also developing.

It all started in 1970s by Winn Royce through his “Waterfall Lifecycle.” The
lifecycle term is slowly being replaced by “process model.” Waterfall was the
first to point out that software projects are engineering projects and their
“lifecycle” starts with the idea formation and ends only when they are ready to
retire after long years of maintenance. Figure 1.3 shows the main activities
proposed by Royce in a process model that suggests their order. Actually any
box in this figure can be further detailed and some texts do present such different
versions of the lifecycle. The requirements tasks can be separated into
elicitation, analysis, and specification activities. Design is usually separated into
logical and detailed (sometimes physical) design activities. Implementation
starts with coding, sometimes considered simultaneously with debugging.
Coding of the units may also be packed with unit testing. Testing is an important
activity; after being conducted on the individual modules, it is applied also for
the integration of the units. There is also system testing, which is carried at the
developers’ site, or even at the customers’ site. Maintenance is also another
engineering area but details of it usually do not take place in waterfall figures.

Component Oriented Software Engineering 9

requirements

design

implementation

maintenance

Figure 1.3 The Waterfall lifecycle

Since its introduction, this model has been the source of a considerable amount of
discussion in the field. Although Royce may not have meant to strictly block a
reverse flow of information across the tasks, Waterfall was taken so by the
industry. Since software was defined to be engineering, the traditions settled in
the hard engineering fields penetrated the new field. One activity had to be
completely studied and correctly finished before the next could start. This was
suggesting a “phased” approach with a linear flow of activities. Soon it was
understood that previous activities had to be revisited frequently, and the
software project had to be a dynamically defined one. The wicked nature of the
problems was to be discovered. Then, modifications to the lifecycle soon
followed, allowing arrows pointing in reverse directions even across far phases.
It is also possible to find sources citing Waterfall with feedback arrows, and
calling the one-way version, the “baroque” lifecycle. Nevertheless, either
approach can find very appropriate problem classes and render the modern
process models less efficient. Mostly, new projects follow other approaches that
are “evolutionary” rather than “phased.” Now we accept that the definition of the
problem will change during development and we have to keep our doors open for
change requests.

The evolutionary approaches were appreciated through mainly two process
models, namely Spiral (Boehm 1975) and Rapid Prototyping (Tanik and Yeh,
1980). There are a few more models that are widely acknowledged and so many
projects select a process model among those to proceed. However, there is
confusion around the terminologies related to the process concept. It will be

Chapter 1 / Software Engineering Concepts 10

beneficial to present a perspective so that the reader can find better meaning to
such frequently used terminology that exists in different sources.

1.4.1 Terminology

In this chapter so far, a process model and two approaches were mentioned.
These terminologies will be discussed in this section along with other ones that
are process related. There are methodologies that need to be selected before any
development can start. Also the term paradigm is another important one that is
used with different meanings. To start the discussion, the closely related two can
be compared. Process model is the abstract version of a methodology; a
methodology is a detailed step-by-step definition of how to conduct the
development with respect to the coarse definition that is the process model. The
process was defined early in the previous section. Modeling a process (almost
always) graphically produces the process model.

We are not limited to a standard set of process models. Organizations often
adopt one and modify it for their specific needs. There are Process Modeling
tools to aid in the formation of such models. These tools are used in Business
Process Reengineering in any discipline, as well as software. One such tool is
Funsoft (Funsoft 2000) that facilitates the instantiation of similar objects
classified into infrastructure, artifacts, and communication as shown in Figure
1.4. A network with flows can be constructed and some simulation can be run.
Actually the model can be detailed towards methodological levels. Some
organizations do have their own methodologies besides the established ones that
are known by their proper names and have been documented in volumes of
books.

Process Modeling is a closely related concept to workflow systems. Similar
modeling media is employed for both concepts and the two phrases have been
used interchangeably. Recently the workflow systems gained a meaning that
relates more to implemented process models that enact the operation in an
enterprise. Equipped with workflow engines and supporting editors, computer
based automation can be adapted to similar organizations with minimal code
modification or development. The operation modeled through the editor can be
modified and the engine will interpret the modified model as a new running
software system tailored to an enterprise.

A methodology has two dimensions: process and representation. The models are
usually graphical. When classifying a methodology, its procedural dimension is
referenced to decide if it is phased or evolutionary. The representation formalism
suggests if it is “Object Oriented (OO)” or “structured.” A newer term for the
structured approach is “traditional.” Today the developing contemporary
approach is the “component oriented” development. “Component based”
approaches have advanced to a level where commercial applications are feasible
[Brown and Wallnau, 1998].

Component Oriented Software Engineering 11

activity

communication

infrastructure

Figure 1.4 The 3 dimensions classifying the process modeling elements

Before getting involved with the process related mechanisms, one should first
have a world-view about software development. That is a paradigm: the main
understanding behind the way the engineering will be carried out. Previously
mentioned evolutionary and phased approaches are actually paradigms. Many
Process Models can obey a single paradigm. Likewise, more than one
methodology can be supporting a process model. Figure 1.5 associates the three
terms with their abstraction levels. Abstraction is a fundamental concept and its
levels are instrumental in explaining the real meaning of the terminology. If
there is doubt about the intended meaning for some terminology mentioned in a
context, trying to understand what abstraction level it applies to will help in
clarification.

Finally, a distinction can be made between the words methodology and method.
Quite often they are used interchangeably. Two famous methodologies had
named themselves as methods: Structured Systems Analysis and Design Method
(SSADM) and the Fusion Method. A clear distinction and definition can be
found in [Aktas 1987]; methodologies have bigger granularities and they are less
formal – they are combinations of methods. Methods are smaller and more
concrete, sometimes mathematical algorithms.

Chapter 1 / Software Engineering Concepts 12

Abstraction level

Paradigm

Process model

Methodology

Figure 1.5 Terminologies in an abstraction level scale

1.4.2 Other Process Models

There are variations of the Waterfall model; some split the individual boxes into
more than one activity while others combine two activity boxes into one. Since a
process model does not prescribe detailed procedures this is acceptable. They
provide a general understanding about the ordering of the top-level activities.
Probably the best alternative in the industry to Waterfall is the Spiral model,
where each cycle of similar activities produces prototypes at its end. Mostly, the
number of iterations is planned and there is an expectation of what should be
included in each prototype. Figure 1.6 displays a spiral process model. This also
has its variations. More detailed versions followed the initial model that
introduced the “risk” procedures as an important task. Other tasks are planning,
development, and evaluation that somehow correspond to activities in waterfall.
A common interpretation of a cycle in the Spiral model corresponds to the phases
of the Waterfall. At the end of an early cycle, a prototype for the requirements
model is produced.

Rapid prototyping is another process model to follow. Owing to the evolutionary
nature of software, build/evaluate cycles continue until the customer
requirements are satisfied. This one does not escape variations also. A Rapid
Prototyping process is shown in Figure 1.7.

Although there are more models, the mentioned set is found to be quite
representative of the major industry usage. Incremental Delivery is a practical
and relatively new process style where the whole system is separated into
“builds” before development. Builds are developed and delivered to the
customer. While the earlier build(s) is (are) in operation, the new builds continue
development and, once finished, they are integrated into the system. This is
another divide-and-conquer avenue with the additional benefit that the customer

Component Oriented Software Engineering 13

can get some functionality earlier than having everything at once. Also
capitalizing on the modern tools the Rapid Application Development (RAD) is
another option.

planning
risk

assessment

development evaluation

initial
prototype

start

Figure 1.6 A Spiral process model

start

requirements

development evaluation

Figure 1.7 A Rapid Prototyping process model

Chapter 1 / Software Engineering Concepts 14

One OO methodology, namely the Unified Modeling Language (UML) [Booch
et al. 1999] has been accepted as a standard in a very short period of time. This
is despite the fact that its process dimension is not as popular as its modeling
formalism and it lacks methodological level guidelines. The earlier UML texts
encouraged their “iterative waterfall” process model. UML has been the second
major attempt to combine the best practices of different methodologies – the
earlier being the Fusion Method. Furthermore, UML is supported by the
Rational Unified Process (RUP) for its missing methodological dimension.

1. 5 Modeling Formalisms
There are different representations involved in SE, starting with the programming
languages at the bottom of the abstraction levels and going up to requirements
specification languages that can be textual or graphical.

There has always been an effort for providing better languages and models.
Programming languages have advanced from the lowest-level machine formats to
higher-level languages. Object orientation is an example. It is both a type of
programming language and a foundation that guides software engineers in
conceptualizing their models. The trend appears to be inventing new
technologies followed by an engineering approach developed to utilize those new
technologies. After assembly languages, FORTRAN and COBOL arrived as
high-level languages. The advancement of the languages through gaining
abstraction levels was thought to be a way to fight growing problem complexity.
Initial SE approaches have been called “structured” because they targeted code
creation based on the formerly available structured languages. PL1 and Pascal
were pioneering the consciously structured programming for the general public.
Three mechanisms have to be represented in the language for it to be structured.
Those three mechanisms relate to execution that is:
• sequential
• conditional
• repetitive

Actually, the earlier SE approaches did not have much to do with structured
programming concepts.

In any case, those initial SE approaches utilized different tools to model a
system. As a result of conceptions inherited from the early languages and due to
being conditioned to less capable machinery, different aspects were isolated in
different model views to define a system. Data, function, and structure appear to
be the 3 dimensions a software model is based on. These same concepts
constitute the main design activities in the traditional approaches. However,
object orientation demonstrates that at least data and function could be
considered as a unity. We probably owe the separation of function from data, to
the history when programmable calculators had to accommodate two different
memory organizations. Data words had to be long and instructions were
extremely short – an instruction is the selection of one out of a handful of keys on

Component Oriented Software Engineering 15

a keypad. Memory was expensive and small instructions were not desired to
waste huge word lengths dedicated for data operands. Figure 1.8 depicts such a
memory organization.

1 2 3

4 5 6

7 8 9

0

+

-

*

/

10 digits display: at least 23 bits

~20 keys: 5 bits

data memory

program memory

word length

word length

Figure 1.8 Different memory requirements in calculators

Object orientation is a step towards better models for human cognition. Still, the
fundamental divide and conquer procedure should not be based on “data” or
“function” both of which are more abstract entities when compared to
“structure.” The developing contemporary approach (i.e. component oriented)
should be based on structure [Dogru 1999]. Among those three concepts,
structure is not theoretically required; it is necessary for easier understanding.
However, any modeling should account for data, function, and “control” to be
Turing Machine compatible; to be able to represent any kind of an executable
process such as a computer program. Sometimes, the control dimension is
implied by the structure modeling facilities such as the “structure chart.”

1.5.1 Modeling emphasis in different approaches

Based on modeling formalisms, so far traditional, OO, and component-oriented
approaches have been mentioned. Although any approach has to represent all of
the necessary dimensions, the approaches all have a primary view of concern.
This emphasis is sometimes deliberate and sometimes by coincidence.

In the traditional era, the “function” concept had top priority. Although the
modeling activity could start with data and structure, and end up with functions,
the result was a network of functions calling each other. That was the view we
had for software: functions calling functions. Later object orientation shifted this
emphasis to data. Data structures are a connected set of data elements plus a set

Chapter 1 / Software Engineering Concepts 16

of access functions. Objects are almost exactly asserting this view. Although the
methods inside objects are not limited to only “access” functions, any access
should be allowed only through those methods for correct OO practices. In
traditional models, data abstractions were modeled by “entities” in the Entity
Relationship Diagrams (ERD). Also shown were relations among entities. In
class diagrams (the fundamental OO model) classes replace those entities and the
relations are retained from the ERDs. Later component technologies introduced
the structural pieces that pack data and function for integration into any system
[Altintas 2001]. To utilize the component technologies in an engineering
approach, the whole lifecycle must consider the part/whole relations where parts
can be as small as components. Earlier approaches consider lines of code for the
smallest “part.” Figure 1.9 displays the emphasis dimensions for the three
approaches.

data

structure

function

 Object
oriented

 traditional

 Component
oriented

Figure 1.9 Modeling emphasis for software development approaches

Structure is a natural dimension for decomposing a complex system. Such
decomposition is easy to understand and the composition of readily available
components is fast to conduct.

1. 6 Selecting appropriate methodology
So many approaches and their historical evolution were mentioned. Also some
detailed methods will be introduced in the later chapters. One might ask at this
point how to determine what approach to use. As there are many different
solutions by different programmers to the same problem, there can be different
selection of approaches once a project is given. Experience is always important
and SE is very much human oriented. Nevertheless, there are established

Component Oriented Software Engineering 17

methodologies and to a lesser extent, guidelines are provided for a given a
project.

There are benefits of following the current trends - especially standards. Some
approaches are in fashion for some time-frames. During this period, if the widely
accepted tools and procedures are applied, the project will enjoy support
availability, relative ease in replacing personnel, and appreciation by a wider
audience. Today, evolutionary approaches with OO modeling especially in UML
are in favor. Of course, the project specifics and organizational aspects will
affect the selection of the methodology. Sometimes the team has to follow a
more practical decision rather than a theoretical one: availability of tools (and
related support) may dictate the methodology selection. Engineering was defined
heavily as a design task. Now it is time to also say that engineering is actually
optimization – other tasks are the application of known techniques. In this case
the optimization is a high-level one: better modeling versus better tool support.

The early doubts about OO approach’s adequacy for large-scale projects seem to
fade away. Any given product might have a structured approach history and an
engineer may be assigned a project that is the improvement over this product.
For minor modifications, the initial approach and its documentation can be
followed. If it is estimated that the change will demand considerable complexity,
it is an option to re-engineer the existing project and build it over using a modern
approach that is most probably OO. As a result, an easier to modify version will
be achieved.

There is also a trend to utilize “components” in an effort to minimize new code
writing. Depending on the availability of the components, a complete
“component oriented” approach can be selected. No matter how sound the idea
seems, it is a new one yet to be approved by the industry for actual large-scale,
industrial projects. “Component Based” approaches [D’Souza 1998] are,
however, more realistic with respect to maturity of the established tools. The
established OO tools now allow the patching of components. This way, existing
codes can be reused with the component protocols that bring a structure to the
integration procedure. Also the overall model is a proven one (OO): component
based environments are usually OO – the component orientation is a radical
change in the approach. If this discussion triggers the idea to develop any new
code as components, the associated cost increase must be considered. This
increase amounts to about five times more for such “reusable” version of any
module. However, the advantage is that once the components are present,
integrating them for different systems costs less than developing specific code for
a target system.

1. 7 Summary
Software is presented in this chapter as an engineering artifact, having its specific
properties. It is highly in demand but very difficult to develop. It is difficult to
completely define the problem for a software engineering project. Starting

Chapter 1 / Software Engineering Concepts 18

already with this difficulty the failure rate is further increased with the
immaturity of tools this new engineering field is equipped. There are
engineering approaches that bring some determinacy to the delivery time and
product quality. These are mainly methodologies guided by paradigms and
process models. All such mechanisms have continuously improved along with
modeling formalisms since the computing related disciplines were founded.

There has been a constant trend towards addressing higher-level abstractions in
the programming languages and modeling media. Also the process concept that
emerged as a key quality factor has improved earlier linear approaches to
evolutionary processes that try to accommodate the dynamism in requirements.
The ideas about abstraction and processes have been applied to other engineering
disciplines as well. These help in the modern engineering practice that has to
both deal with narrowed specialization fields and an interdisciplinary
coordination. The interface concept emerges to be an important aspect defining
how components will connect, especially for interdisciplinary designs.

The process should be tuned or even freshly invented to meet the challenges of a
specific project, the realities of the organization, and the utilized infrastructure.
Before any development can start, tools and such approaches have to be decided
for selection. Software development is a heavily human-oriented task. The
careful and skillful allocation of tools and procedures should be accompanied
with a modern management and staffing understanding for increased chances of
success in this very difficult but also a very rewarding field that is defining our
near future.

1. 8 Questions
1. Define the areas that are common and different between “hard” engineering

disciplines and software.
2. Define example projects that are more suitable for each of the mentioned

process models and modeling formalisms. Explain how they are suitable.
3. Explain why structure is important for the component oriented approaches

and how data and function dimensions can be modeled in this approach.
4. Explain how traditional/object-oriented/component-oriented approaches

differ with respect to problem understanding and problem representation.
5. Name two other kinds of software categories besides those already listed in

the “software” section.
6. Software statements can easily be changed and the resulting operation can be

observed very fast. Discuss the advantages and disadvantages of this
“flexibility.”

7. What are the potential risks in designing a new methodology for the new
project your company has undertaken?

8. Since we are narrowing the specialization of the engineers in various
disciplines, how can we successfully build systems that require the
cooperation of components gathered from different engineering fields?

Component Oriented Software Engineering 19

9. Software Engineering is heavily human-oriented. What measures can be
taken to protect the project against a case where a considerable number of
key personnel leave the project?

10. Is there any technique other engineering fields have benefited from, that you
could propose to help also in the software field?

1. 9 References
[Aktas, 1987] Ziya Aktas, 1976, Structured Analysis and Design of Information

Systems, Prentice Hall.

[Altintas, 2001] Ilkay Altintas, 2001, A Comparative Study for Component Oriented
Design Modeling, M.S. Thesis, Computer Engineering Department, Middle East
Technical University, May, Ankara, Turkey.

[Booch et al. 1999] Grady Booch, James Rumbaugh, and Ivar Jacobson, 1999, The
Unified Modeling Language User Guide, Addison-Wesley.

[Brown and Wallnau, 1998] Alan W. Brown and Kurt C. Wallnau, 1998, “The Current
State of CBSE,” IEEE Software, September-October.

[D’Souza, 1998] Desmond Francis D'Souza, Alan Cameron Wills, 1998, Objects,
Components, and Frameworks With UML: The Catalysis Approach, Addison-
Wesley.

[Dogru 1999] Ali Dogru, 1999, “Component Oriented Software Engineering Modeling
Language: COSEML,” Technical Report TR-99-3, Computer Engineering
Department, Middle East Technical University, Ankara, Turkey.

[Simon 1969] Herb A. Simon, 1969, Sciences of the Artificial, MIT Press, Cambridge,
Massachusetts.

[Tanik and Chan 1991] Murat M. Tanik and Erik S. Chan, 1991, Fundamentals of
Computing for Software Engineers, Van Nostrand Reinhold, New York.

[Tanik and Ertas 1997] M.M. Tanik and A. Ertas, 1997, “Interdisciplinary Design and
Process Science: A Discourse on Scientific Method for the Integration Age,” Journal
of integrated Design and Process Science, September, Vol. 1 No. 1: pp. 76-94.

Component Oriented Software Engineering 20

Chapter 2
Chapter 2 Software Project Management

2. 1 Introduction
There are different approaches to software development. Management of
software projects should also follow those different approaches closely. Luckily,
most of the techniques and concepts used in software project management are
common and are adapted in different ways for different development processes.
This chapter presents main techniques and approaches for software project
management.

Project planning is the umbrella activity that guides the other activities. Like
most of the tasks, planning needs to be dynamic and adaptable. Nevertheless,
with the information gathered after a preliminary analysis, a plan needs to be
shaped to cover all the lifecycle of a project. This plan is documented along with
other plans such as a quality assurance plan and a testing plan. All such
documents will be revised and should be kept up-to-date during the development.
Sometimes it is not unrealistic to anticipate software activities to produce more
documentation than code. If this becomes an unnecessary burden, more flexible
approaches become reasonable such as Agile methodologies and Extreme
Programming (XP). The field has so far suffered though, not because of the
over-documented projects but the under-documented ones.

Managing a project with so many parameters and unknowns would be a
prohibitively difficult mission. Luckily some of the knowledge is available as
templates in case the enterprise has established some process maturity. Project
specifics are mapped to the components of the process, and tracking and process
improvement are left as the major attention demanding activities.

2. 2 Project resources
Planning involves project resources, estimation of cost and duration, staffing for
the project activities, producing documentation, and tracking. The resources are:
• Human
• Software
• Hardware

Such resources need to be defined and their times for utilization and acquisition
should be planned.

Component Oriented Software Engineering 21

2.2.1 Human resources

Software projects are often multi-disciplinary. Most of the time, automation is
requested for a process that is being conducted in conventional ways. It is
possible that the software developer company is not familiar with the domain.
Experts in the domain may be acquired to accompany the team. The roles tasks
require may demand full-time or part-time contribution. Project plan should
indicate exactly what role is allocated when and for what time duration. The
durations will be estimated by techniques to be explained later. The roles
include:
• Project manager,
• Systems analyst,
• Designer,
• Lead programmer,
• Programmer, and
• Test engineer.

However, it is often quite possible to extend the list with the roles, for example:
• Quality manager,
• Quality expert,
• Project secretary,
• System manager,
• Database Manager,
• Web designer,
• Hardware Leader,
• Network expert,
• Trainer.

Being costly, the human resources can be allocated through the formulas that
suggest varying effort demands with respect to the phase of the project. Another
difficult scheduling problem surfaces in case the organization has more than one
project under development: the pool of personnel will be considered for varying
effort demand, based on the scheduled tasks of multiple projects.

2.2.2 Software and hardware resources

Software tools are helpful in so many of the development tasks. Computer Aided
Software Engineering (CASE) and Computer Aided Design (CAD) tools are the
important ones. Compilers, word processors, and project specific tools may also
be used. There are also tools that are used for management tasks. Besides tools,
the reusable software components are also very important resources. Component
technologies are being developed and they can be utilized in different ways:
• Common off the shelf components (COTS) are usually large-grained: they are

substitute solutions for considerably big parts of the problem. Acquired per
need, they usually are not part of the organization’s library.

Chapter 2 / Software Project Management 22

• Medium/small grained components can be bought individually, or as a library
(sometimes called a framework). They may be part of some CASE or
framework environment. They obey a component protocol or architecture such
as DCOM or JavaBeans.

• Components developed inside the organization, may be complying with a strict
protocol or could be loosely defined components – they may alternatively be
called a library of functions.

Reuse is a concept whose benefits are not questioned; utilizing readily available
software is simply advantageous in practically all cases. The defined architecture
for reuse today materializes itself as component frameworks and consequently
the component set constitutes an important part of software resources.

Process modeling tools help in the understanding of the workflow throughout an
organization. Data-flows, task deadlines and the bottlenecks can be visualized
through their usage. Scheduling tools help in assigning times and durations to
the work breakdown structure. Estimation tools help projecting the overall time
for the project, required effort, and manpower.

The bulk of the CASE tool usage is related to analysis and design modeling.
Sometimes they help in evaluating the quality of the system under development.
They also undertake the production of the skeleton code, and sometimes they
generate code automatically for some of the routine functionalities. Compilers
are inevitable. Some of them carry capabilities that qualify them as CASE tools.
Debuggers, test case generators and text formatters are among the software
resources. Prototyping and simulation tools help develop intermediate
applications that give an idea about the future systems behavior.

For maintenance, there are also software tools that help with reverse engineering
of existing systems. It is possible to analyze the code and retrieve design
information out of it, even through presenting diagrams. Also system software
such as operating systems, network software and e-mail or media management,
electronic conferencing tools are part of the inventory.

Hardware resources are various computers and the network equipment. There
used to be mainframe computers which have been replaced by servers, such as
unix workstations or, more currently, powerful Personal Computers (PC). The
PC architecture has grown in different directions anywhere from home PCs to
servers that can contain multiple CPUs. The inventory should include any other
computers utilized as clients or stand-alone devices. Network equipment is the
cabling, the switches and routers that make the computers connect to the
network, and the dedicated servers for network management. Besides these
fundamental technologies, buildings, rooms, and office equipment could also be
assigned to a project.

Component Oriented Software Engineering 23

2. 3 Process Maturity
Not listed as a standard resource, any established process mechanism is a high-
level and sometimes a vital asset of an organization. The documented know-how
of how to plan, conduct, and monitor the project brings determinism to the
quality and time-response of a development. The topic is discussed along with
the process quality and standards. The Capability Maturity Model (CMM)
developed at the Software Engineering Institute (SEI) is currently the most
widely accepted process evaluation system [Paulk et al. 1994]. Five maturity
levels are proposed for processes and they are substantiated with activities and
further measures. These levels and their characteristic attributes are shown in
Figure 2.1.

Level 1
INITIAL

Level 2
REPEATABLE

Level 3
DEFINED

Level 4
MANAGED

Level 5
OPTIMIZING

disciplined

standard, consistent

predictable

continuously improving

Figure 2.1 Five levels of the Capability Maturity Model

A Level 1 process is considered ad-hoc, where success depends on the
unorganized actions of individuals. Organizations with Level 2 processes are
more independent able to repeat the previous achievements of successful
programmers. Level 3 is where a process standard is established throughout the
company. Measurements of the achievements are expected as a major
contribution for Level 4. At this point, tracking the process is facilitated by the
measurements an organization would devise over its process. Finally, such
measurements are exploited to modify the process for continuous achievement, in
Level 5. Key process areas and activities are defined that correspond to different
levels. There are other process quality models and the topic is gaining

Chapter 2 / Software Project Management 24

importance, as more software customers demand such compliance. The key
process areas for four levels of the CMM are listed below:

Level 2 (Repeatable):
• Requirements management
• Project planning
• Project tracking
• Subcontract management
• Quality assurance
• Configuration management

Level 3 (Defined):
• Organization process focus
• Organization process definition
• Training program
• Integrated software management
• Product engineering
• Inter-group coordination
• Peer reviews

Level 4 (Managed):
• Quantitative process management
• Software quality management

Level 5 (Optimizing):
• Defect prevention
• Technology change management
• Process change management

2. 4 Estimation and Metrics
Measurement is a key activity for project management [Pressman 1997]. There
needs to be some indicators of how the process is advancing. In the beginning,
we need to know how much work is needed to complete the project. For both
initial estimation and tracking, measurement parameters are important. Other
factors relating to quality should also be measured otherwise there cannot be a
communication among the team members for objective assessment of any
parameter and for definition of the goals.

The metric to be measured is the question. Especially for software, there are very
few directly measurable parameters. Coupled with the inherent difficulties of the
field, management can easily become frustrating because of the subjectivities in
assessments. Luckily, some practical and empirical methods emerged that were
verified in industry. There is a common language now for measurements and
estimation in software discipline.

Component Oriented Software Engineering 25

2.4.1 Base for metrics

Metrics can be defined as the degree to which a process or product achieves an
attribute. There are fundamentally two different bases for measurement: (1) size
oriented and (2) function oriented. Lines-of-code is the most frequently used
unit. Actually thousand (Kilo) Lines Of Code (KLOC) is used for most of the
size oriented metrics. The alternative is Function Points (FP) that gives a
numeric assessment of the total complexity of a software artifact. These
measures for complexity are trying to give an idea about the overall “weight” of
the software. Number of lines could be a misleading indicator. Same
functionality can be obtained by varying code sizes depending on who writes it.
The Function Points method is addressing this problem and presenting numeric
results that assess the complexity (“weight”) independent from the programming
language statements. Also different languages will yield different number of
lines for the same algorithm hence presenting another problem with the number
of lines approach. On the other hand, lines-of-code is a directly measurable
metrics that can be produced automatically. Before implementation is finished,
the KLOC measure can only be estimated.

There are advantages and disadvantages of size and function oriented metrics.
While size is easy to obtain and more objective, function oriented estimations can
be calculated before any code is written. Some problem properties are required
for calculating function points. These properties are defined before design
anyway. Both approaches support estimations before development and
measurements after development. The FP method, however, prescribes how to
assess the complexity with the logical definitions. If no information about past
development measurements exist, estimation could be performed using FP. Then
it is also possible to convert FP to KLOC and continue with size-oriented
parameters.

The following sections present size oriented and function oriented approaches to
metrics. However, quite frequently those two approaches are used together.
There are actually new methods supported by tools that combine the approaches
and even add newer techniques. Object orientation addresses this matter and
object oriented models provide specific input other than numbers of lines and
other values. Also some dynamic modeling to account for changing effort with
respect to time is included in such tools.

2.4.2 Size Oriented Metrics

Mostly utilizing the KLOC unit, process and product attributes are usually based
on size. A product (or sub/intermediate-product) can be estimated or measured
to be of certain KLOC size. Indirect metrics can be produced, such as
productivity, that is, the Lines of Code per unit effort. Effort is measured by
person-months. Productivity is reported in terms of KLOC/person-month.
Likewise, cost can be calculated as Dollars/KLOC. Other frequently used

Chapter 2 / Software Project Management 26

metrics are errors/KLOC, defects/KLOC, Documentation-pages/KLOC,
errors/person-month, LOC/person-month, Dollars/documentation-page.

The rest of this section covers lines of code based metrics owing to the
established nature of such practices. However, other fundamental size measures
such as number of screens (or forms) are also being used especially after the
popular demand for windows based graphical software.

There is some dispute in the utilization of size oriented metrics. For those who
really need objectivity, more has to be accounted for. Are all the lines the same?
For big projects, such inequality does not constitute an issue. Big projects
inevitably contain code originating from different personnel and different
environments that yield a natural averaging. As a result the meaning of one line
makes sense from the complexity point of view. But, if the size includes
comments then the size has a different meaning. Some size oriented metrics
prefer to differentiate the executable instructions from non-executable lines
(comments).

Measurement is less of a problem when compared to estimation, although still
more difficult for software than for hardware. Most of the compilers are
equipped with tools that can report the total lines of code. Estimating the size of
a code to be developed is more difficult. In any estimation, past experience and
any recorded information helps. With or without historical data, some techniques
are employed to ease this difficult task of estimation. The “Lines of Code”
(LOC) method is for arriving at an overall estimate of the product once the
system is decomposed to a set of subsystems and estimations can be done over
these parts. Of course overall size is a linear combination of the sizes of the
subsystems. There is a fundamental problem with this approach: Complexity of
the total is not equal to the sum of the complexities of the parts. For size only,
this does not seem to be a big problem but for effort and derived estimations
more care should be taken. The relation is not linear – some exponentiation is
required! Equation 2.1 formulates this complexity law where C is for complexity,
A and B are the parts of a software system.

 C(A+B) > C(A) + C(B) 2.1

If this approach is taken however, some extra effort for the integration can be
reserved and that could represent the excessive complexity. Table 2.1 presents
an example for Lines of Code method where a project is suggested to have
components such as User Interface and 3-Dimensional Geometry, for instance.

Estimating size is the initial activity. After that, effort can be estimated
especially if the efficiency of the organization is known. Other columns can be
added to Table 2.1 for listing the efforts and cost, among other parameters,. per
function. If the known efficiency for the organization reveals the value of 100
lines per person month, then the User Interface function would require
(2300/100) 23 person-months.

Component Oriented Software Engineering 27

Table 2.1. Lines of Code Method

Function Estimated LOC

User Interface 2300

Database management 3350

3D Geometry 6800

Peripheral Control 2100

Estimated Total LOC: 14550

2.4.3 Empirical estimation

The nonlinear relation between size and complexity is also observed in the
measurements averaged across the industry. The general relation is in the form
of:

 Effort = A + B (size) C 2.2

There have been numerous studies for fixing the constants (A, B, and C) in
Equation 2.2. The commonly used formula belongs to the Constructive Costing
Model (COCOMO) [Boehm 1981]. This model actually is made up of three sub-
models based on model sophistication. To be able to use this approach, after
selecting the sub-model, the problem class has to be determined. Problems are
rated with respect to the degree they are “embedded.” This attribute of software
has been listed in the introductory sections about software. If embedded, the
project will be more complex than a project of the same size that is not
embedded. Also real time software is more complex than regular business
software. The project types are:
• Organic
• Semi-detached
• Embedded

The Sub-models for COCOMO can be listed as:
• Basic: provides effort and time, as a function of size.
• Intermediate: Same as Basic Model but includes a set of cost drivers for

subjective assessments of product, hardware, personnel and project attributes.
• Advanced: Like Intermediate, but is also dynamic. Each phase such as

analysis and design, are considered. The results are not constant values but
they change as a function of project duration time.

Finally the model is presented as equations and the coefficients used in these
functions are given in Table 2.2. The advanced sub-model is not included. Size

Chapter 2 / Software Project Management 28

should be entered in thousands of lines of code, time is calculated in months and
effort is in person-months.
• Basic

 Effort = ab KLOC bb 2.3

 Time = cb Effort db 2.4
• Intermediate

 Effort = ai KLOC bi x EAF 2.5

 Time = cb Effort db 2.6

Table 2.2. Coefficients for the COCOMO

Project type ab bb cb db bi bi

organic 2.4 1.05 2.5 0.38 3.2 1.05

semi-detached 3.0 1.12 2.5 0.35 3.0 1.12

embedded 3.6 1.20 2.5 0.32 2.8 1.20

For a dynamic model, the following formula can be used. This is Putnam’s
equation. Now, the project duration must have been assessed before and it is
entered in terms of years. Effort is still expressed in person-months.

 E = [LOC x B 0.333 / P]3 x (1/t4) 2.7

There are other values this equation requires. B is the special skills factor and
takes the values (0.16 … 0.39). P is the productivity factor. Some values for P
are listed below:
• 2000: for real-time embedded software,
• 10000: for telecomm and systems software, and
• 28000: for business systems applications.

Using Putnam’s equation, a project with a long duration can be planned for
staffing. Typically effort curves start low and they climb up soon. Later there
are few peeks corresponding to the different development activities such as
coding.

2.4.4 Function Oriented Metrics

Independent from the coding style and languages, the FP method utilizes the
“domain” parameters related to a project and arrives at an estimate [Albrecht

Component Oriented Software Engineering 29

1979]. The equation below is used in the calculation of Function Points. The
count total in this formula is calculated using Table 2.3. Also the complexity
adjustment factors (Fi) are taken from Table 2.4.

 FP = countTotal x [0.65 + 0.01 x ΣFi] 2.8

Table 2.3. Count Total calculation for Function Points

parameter count simple Average complex

user inputs m 3 4 6 m x 4 (average)

user outputs n 4 5 7 n x 7 (complex)

user
inquiries

p 3 4 6 p x 3 (simple)

files … 7 10 15 …

external
interfaces

 5 7 10 …

 Count total
=

A few words are necessary for the usage of Table 2.3. First of all, if there are
different numbers of items for a single parameter of varying complexities, they
should be individually weighted and added to the right-most column. For
example, if there are 15 inputs of simple complexity, 16 average inputs and 17
complex inputs, the number to enter to the right is 15*3 + 16*4 + 17*6, that is
211.

The next issue is what should be counted as one item? Is an address information
one input or should we count the street name and street number as separate
inputs? The answer is in the way the information will be used in the system:
other than the input procedure, if an item is going to be accessed anywhere as a
data item alone for processing/printing, for instance, then it will count once. In
other words, if the complete address will always be treated as a single entity
throughout the program, then the whole address will be counted as one input. If
for example, the street name or the city will be used independently such as in the
example of listing all the cities in the system on one page, then city will be

Chapter 2 / Software Project Management 30

counted as one input and consequently a complete address will count for more
than one.

Table 2.4. Complexity Adjustment Factors

Factor Grade (0..5)
1 Reliable backup and recovery

2 Data communications

3 Distributed processing

4 Critical performance

5 Heavily utilized operational environment

6 On-line data entry

7 Input transactions over multiple screens (on-line)

8 Master file updates on-line

9 Complex input/output/file/inquiries

10 Complex internal processing

11 Reusable code design

12 Conversion and installation included in design

13 Multiple installations for different organizations

•14 Design for facilitating change and ease of use

Total :

2.4.5 Extensions to Function Points

FP has been a useful metric for estimation teams. Soon after its introduction,
some extensions have been proposed and used. Mostly Feature Points and 3D
Function Points can be mentioned. In Feature Points, FP is virtually used as is,
except for including the number of algorithms. Any function calculating a value
is an algorithm. This parameter is added to the existing five in Table 2.3.

3D Function Points utilizes the Data, function, and Control dimensions.
Parameters are organized in those dimensions before including them in the
formulas. These dimensions are accounted for as below:
• Data: same as in Function Points.
• Function: number of transformations is also counted.
• Control: number of states contributes to the complexity as one count

each.Translating between the approaches

Once more, average numbers from industrial projects come into play. One
function point is translated to lines of code for different programming languages.

Component Oriented Software Engineering 31

This translation also indirectly suggests the conversion ratios among different
programming languages. The numbers taken from Table 2.5 can be used, to
convert the FP based estimation to KLOC values: FP analysis can be conducted
before development but KLOC values are required in the empirical models such
as COCOMO. Now having the KLOC values, empirical estimation techniques
can be utilized in the calculation of effort and time. Using the two approaches
sequentially, one can arrive at time and effort estimations starting with the
information that is available at definition time. The values in Table 2.5 have
evolved in the past decade especially towards a direction that would increase the
size/function ratio.

Table 2.5. Function Point equivalencies for Programming Language Statements

 (adopted from [Albrecht 1983])

Also Graphical User Interface (GUI) based size metrics can be converted to
Function Points. These numbers are more recent than those of Table 2.5.
Nevertheless, they can be useful for a preliminary complexity analysis. Table 2.6
presents the FP equivalents of basic graphical user interface modules.

Programming Language FP/LOC

Assembly 300

C 125

COBOL/FORTRAN 105

Pascal 90

Ada 70

Object Oriented 30

4th Generation Languages 20

2. 5 Scheduling
An estimation for the overall project may have been obtained. There is no
guarantee that the project will meet the deadline imposed by the estimation or by
the contract. Just like in the estimation by LOC method, the divide and conquer
approach is a key factor in trying to meet the deadline. This time, the total effort
is divided into tasks and each task should have its own deadline. Now,
dependencies among the tasks, if delayed, may cause a problem and the tasks
lying on the “critical path” will result in deadline problems. All the separated

Chapter 2 / Software Project Management 32

tasks may need different resources, or they may share some. Output of one task
may be input to the other; such constraints suggest serialization and ordering of
the tasks. This topic is intimately related to process modeling and starts with
identifying a number of manageable tasks.

Table 2.6. Function Points for Windows structures

GUI Feature unction Points

Message Box 4

Simple Dialog 3

Average Dialog 4

Complex Dialog 6

Simple frame 4

Average frame 7

Complex frame 13

Average file 7

Complex file 15

After the tasks are known, their dependencies are analyzed and their effort
requirements, starting and ending times are assigned. Tasks should deserve the
effort assigned. Also responsible personnel and input/outputs, as well as other
resources should be indicated. It is also helpful to mark milestones for important
stages when there is usually a reporting and/or evaluation. There are two types
of graphical representation for scheduling. The first one is the Timeline Chart or
the Gantt Chart. The time axis is horizontal and each task is displayed as a
rectangle on a separate row, with its starting and ending times clearly indicated.
Milestones are marked as diamonds at specific time points. These charts sort the
tasks in time but they do not show the dependencies as good as the second type
of charts which are in the form of task networks. Figure 2.2 displays a Timeline
Chart example.

Component Oriented Software Engineering 33

Task Week1 Week2 Week3 Week4

interview users

study material

write SRS

Milestone: req.

logical design

detailed design

Figure 2.2 An example Timeline Chart

These charts can be drawn in different detail levels for the same project. A
summary chart may include aggregated tasks and may have its time intervals
defined in months, quarters, even in years. A detailed chart has to be drawn
laying out all the defined tasks. Time intervals could be as small as weeks and
even days. Tools help organize the project scheduling by associating the
beginning and ending times with the tasks and other explanations.

Task networks help visualize the dependencies, and are instrumental in finding
the Critical Path. The bottlenecks in the process should be identified so that the
management knows where to interfere to ensure the meeting of the deadline.
Figure 2.3 depicts an example task network.

Plan 2
builds
Plan 2
builds

Build 1
design

Build 1
design

Build 1
definition
Build 1

definition

Build 2
definition
Build 2

definition

Build 1
FTR

Build 1
FTR

Build 2
design

Build 2
design

Integration
walkthrough
Integration

walkthrough
Plan 2
builds
Plan 2
builds

Build 1
design

Build 1
design

Build 1
definition
Build 1

definition

Build 2
definition
Build 2

definition

Build 1
FTR

Build 1
FTR

Build 2
design

Build 2
design

Integration
walkthrough
Integration

walkthrough

Figure 2.3 An example task network

Chapter 2 / Software Project Management 34

The Process Modeling tools on the other hand, can display a more detailed view
of a task network. Input/output products, resources, and roles assigned to the
tasks are visible. Also the communication connections among different tasks can
be modeled. Once built, a model can be run to produce simulations and more
analytical data can be obtained for the evaluation of the bottlenecks. Further
information is contained that could help in analyzing the needs of individual
tasks and in justifying the effort assigned for them. Figure 2.4 presents an
example model page, corresponding to the FunSoft [FunSoft 2001] tool.

 ROLE

requirements
elicitation: B1

ROLE

customer
requirements

Requirements
engineers

customers

Build 1
requirements

detailed
design

ROLE

design
engineers

Figure 2.4 An example Process Model

2. 6 Staffing
Early ideas about software personnel can be summarized by the term
“programmer teams.” This is an idea that is still valid to a lesser degree. It is
generally known that strict hierarchy in the personnel management does not fit
the software field. Programmers usually need a more relaxed atmosphere to
conduct their creative work. On the other hand, such an expensive process
requires methodological approaches and the product is not a result of a single
person. Programmers have a tendency to act without discipline wherever
software engineering notions are not mature. An organization that optimizes
between flexibility and process compliance is what is needed.

The programmer teams [Baker 1972] are small groups of two to seven people
working on the same block of code. There is a chief programmer or the leader
who provides the coordination among the members, but this is not like a rigid
manager’s task. There is a librarian who would provide required research and
maintain the versions of whatever produced – mostly code. The version
management task today is greatly facilitated by Configuration Management tools.
There may be critical skills in the team; for example, an expert in the domain of
the current project. It is a good idea to have an alternative person for any critical
role in the team. Usually meetings provide the communication inside a team and
across teams. Communication should be encouraged, especially through
informal formats. Since it is another fact that technical personnel in the software

Component Oriented Software Engineering 35

field change jobs very frequently, keeping the rest of the group informed about
everybody’s accomplishment helps preparing personnel “backup.”

About one quarter of a person’s time is productive and the rest is spent for
communications and other non-productive efforts such as training. Between any
pair of team members there is a communication connection. Any communication
connection takes about 5 to 20 percent of a person’s total effort. Although it is
expensive, the information sharing among the team members is worth the cost.
Big teams start getting inefficient; after some size the effort gets spent on mostly
communications. Figure 2.5 displays a small team with communication
connections.

Librarian

Chief Programmer

Backup Engineer

Communication link

Figure 2.5 Communications in a programmer team

It is a common observation that projects fall behind schedule. The first
corrective action that comes to mind is to hire more personnel in the middle of a
project. This is usually not a remedy, due to the increased communication effort
on top of the new training needs. The newcomers need to catch up with the
project that has already advanced.

For a big project, a dynamic estimation tool can be used and personnel with
different capabilities with respect to the phases, such as requirements or coding,
can be employed. On the other hand, for small projects this may not be practical.
Also eXtreme Programming (XP) techniques suggest that everybody should be

Chapter 2 / Software Project Management 36

familiar with the entire code and coding should be done in teams of two, sharing
a single computer.

2. 7 Risk Management
The difficulty in software development needs to be managed. One handle the
managers have is identifying the areas that could be responsible for what could
go wrong. Risk management is basically identifying and assessment of potential
threats to project success, and preparing for corrective measures. The parameters
that would hinder the development define constraints. If the probability is not
100 % for any factor’s being a threat, then it is termed a risk rather than a
constraint. Risks can be assessed for their chance of attack and for the estimation
of the severity of their consequences.

Risks could be classified with respect to areas concerning business, technical, or
procedural error fields. The classification helps in the consideration of a variety
of risks during the planning phase, trying to completely cover the possibilities.
Business related risks could be the discontinuation of the financial resources, loss
of interest in the management, market loss, among other things. There are also
risks related to the operational and development environments accommodating
new technologies. The lack of interest on the user side is another important one.
Also, high personnel turnover rates define one of the peculiar risks of software
development. Managing a risk includes mitigation; measures should be taken
before the project (or the related stage) starts to avoid a risk. If this is not
successful or an unprecedented threat happens, then it is time to repair the
process. Perhaps the project plan has to be overhauled. Major plan changes are
not very uncommon during a projects development stage.

A risk management plan can also be prepared and documented. Assessment
helps in prioritizing the risks so that with limited resources an effective strategy
could be drawn for project safety. A risk could affect a project in two ways:
delaying the completion time, and increasing the cost. The two components of
project hindrance need to be evaluated simultaneously to determine the severity
of the threat. Sometimes this may lead to the early termination of the project.
Management makes the decision to terminate a project and absorb any losses to
prevent further losses in the future. Also, groups of risks could be evaluated for
the probability to occur together and assess the composite consequence: none of
them might be severe enough if attacking alone, but together the threat might
prove to be fatal for the project.

2. 8 Quality
Engineering always includes an optimization effort between cost and quality.
The new competitive markets rule-out products of less quality. Also restrained
with short cycle times the development staff is really challenged. One remedy is
quality standards which themselves bring extra cost, effort, and time to the game.
They provide some determinacy to the engineering output in terms of the quality

Component Oriented Software Engineering 37

of the product. The quality of the process that produces the product has surfaced
lately as the main issue. Now the quality standards aim the process more than the
product, which indirectly is affected anyway.

A closely related concept is measurement, to assess quality. Metrics and
Estimation section introduced some basic concepts for measurement. Monitoring
of a development effort cannot be achieved without measurements. The
development should not be taken as merely meeting deadlines; quality factors
need be traced as well. The difficulty is the definition and measuring quality
related parameters. It is often difficult to directly measure quality. Some quality
factors must be defined and their measurement techniques should be described.
There has been a variety of classification and definition for quality factors.

In the beginning, there was less control over the process to affect quality. Rather,
end products were tested and defects were detected. Quality control was applied
to minimize the variation among the product instances. Later, the quality
assuring measures were brought into the process to yield lesser defects. Total
Quality Management (TQM) is partially a result of this idea yielding systematic
approaches to eliminate the root causes of the defects. Software Quality
Assurance (SQA) is the umbrella activity concerning the whole lifecycle. The
activities involved in software development include quality management, formal
technical reviews, documentation, compliance with standards, and measuring
mechanisms. Testing, measurements and their reporting are crucial for the
monitoring of quality.

A common measure is “number of errors.” Tests are conducted to discover
errors. Finding and fixing errors are expensive. The cost to repair an error
increases as the development progresses. Figure 2.6 illustrates this increase in
the repair cost.

Validation and Verification (V&V) are other measures for quality. Both tasks
are usually carried out through tests. Validation is the questioning of
requirements correctness. Verification is the questioning of the solutions
meeting the (validated) requirements. Requirements are the main reference for
judging the quality of software. Also compliance with standards and “implicit
requirements” are important components of software quality. Implicit
requirements are not mentioned by the customer but conscious engineering
practices assume them as default additions.

2.8.1 Quality Factors

Among a variety of classification attempts to quality factors, McCall [1977] can
be selected as an early and valuable work. Due to the difficulty in directly
measuring those factors, a set of metrics are also defined. A weighted addition of
related metrics per quality factor is calculated to arrive at a quantitative
interpretation. The factors are:

Operational characteristics:

Chapter 2 / Software Project Management 38

• Correctness
• Reliability
• Usability
• Integrity
• Efficiency

Changeability:
• Maintainability
• Flexibility
• Testability

process phase

re
la

tiv
e

co
st

Figure 2.6 Increase in the error repair cost

Environment adaptability:

Operation

Integration

Testing

Coding
Design Requirements

• Portability
• Reusability
• Interoperability

The metrics used in the evaluation of quality factors are:
• Audibility
• Accuracy

Component Oriented Software Engineering 39

• Communication commonality
• Completeness
• Conciseness
• Consistency
• Data commonality
• Error tolerance
• Execution efficiency
• Expandability
• Generality
• Hardware independence
• Instrumentation
• Modularity
• Operability
• Security
• Self documentation
• Simplicity
• Software system independence
• Traceablity
• Training

There have been more categorizations of quality factors and some are being used
today.

2.8.2 Statistical Quality Assurance

The expensive nature of quality encourages a more quantitative control over the
problem. The statistical approach helps in prioritizing the areas to allocate the
quality effort. Errors are classified and they are traced to the underlying causes.
The Pareto principle states that 80 percent of all defects are caused by 20 percent
of all causes. These causes are the ones to attack first. A list of causes
determined for statistical quality assurance is given in Table 2.7.

An organization should report error counts and make a table organized with
respect to the causes shown in Table 2.7. After deciding which cause relates to
each error, a seriousness value for it is also indicated. The serious, moderate, and
minor errors are weighted and added to a total count that is called the “phase
index” to indicate an overall error based quality value for a development phase.

2. 9 Software Acquisition
When a project is granted to a company (or a consortium) for development, there
should not be an immediate expectancy for developing all the code especially
from scratch. There may be readily available sub-solutions to the problem, and
other companies may be more competent for developing some of the sub-
problems or the complete problem. An analysis can be performed accounting for
a variety of options for the acquisition, their costs and other benefits. The

Chapter 2 / Software Project Management 40

options are development, reuse, sub-contract, or a mixture for the complete
project or for parts of it.

To attain a level of quality, sub-contract management is another task if there is
such cooperation. It is also common now for projects to be outsourced overseas
for sub-contracting. There is the risk of relaying requirements at a distance.
Problems are already experienced with requirements even when the customer is
near the developer. Still cost differences make it feasible for some projects to
use distant sub-contracting.

It is worth mentioning that the general trend in any industry is to outsource the
parts of the project that are not within the main expertise of the enterprise. The
“core competency” of the organization, however should be preserved as the
strategic asset and development related to this field should be carried out
internally. Any other component of the product could be outsourced from
companies that have better expertise/competency for the related development.
There have been efforts to present the core-competencies as process models,
ready to be integrated with others to provide the architecture of bigger enterprises
in the virtual environments [Manzer, 2002].

Table 2.7. Software Error Causes

Cause Abbereviation

Incomplete or erroneous specification IES

Misinterpretation of customer communication MCC

Intentional deviation from specification IDS

Violation of programming standards VPS

Error in data representation EDR

Inconsistent module interface IMI

Error in design logic EDL

Incomplete or erroneous testing IET

Inaccurate or incomplete documentation IID

Error in programming language translation of design PLT

Ambiguous or inconsistent human-computer interface HCI

Miscellaneous MIS

Component Oriented Software Engineering 41

2. 10 Configuration Management
Often, a version of a source file is changed and later a request to revert to the
earlier version arises. Probably the earlier versions are lost and to recover, some
of the effort has to be repeated. If an effective version management is employed,
nothing is lost; all the previous versions are kept and retrieved per need. This is
valid for documentation and data units as well as code. Then there is the
question of who determines when to accept the status as a valid version to be
stored. Also there is the management problem for access rights on any unit
stored in the configuration management tool. Change is constant in software
development. A threshold where the accumulated changes correspond to some
maturity in the item is accepted as a baseline and the item is stored with a version
number.

If there is a need to change any aspect of an existing module, someone must
initiate a request for change. Often, companies have change request forms that
are subject to approval when filled. After the request is authorized, it is
dispatched to the related personnel to conduct the change. Routine testing and
documentation updates are enforced and the changed status can be evaluated for
constituting a new version. Actually some of the versions will be called
“releases” if the version is released to the customer. A release is corresponding
to a system, whereas modules and other items can go through different changes
and versions. Versions are numbered following a hierarchical syntax where
decimal points are separating numeric sections that correspond to smaller and
smaller changes.

Configuration management is aided by tools that are as important as the CASE
tools. Powerful yet free tools are available. It is a good idea to get the team
acquainted with a tool and start using it before the construction of any document
or code.

2. 11 Maintenance
Maintenance is the engineering effort dedicated after delivery. There could be
any number of reasons to change a finished system. There may be necessities or
speculations about better use of the product. Maintenance can be classified as
corrective, adaptive, perfective, or preventive. There are so many systems
waiting to be ported to a different operating system or Web platform, thus
requiring adaptive maintenance. If a system in operation reports frequent errors
(defects) and maintenance is difficult and expensive, it is time to consider a re-
engineering process also. For a product, the effort to repair one source line is
many times more than the effort to create it initially. Before deciding to re-
engineer a system, expected lifetime and expected maintenance costs for the
target system must be estimated and compared to the estimated maintenance
costs if it is not re-engineered. Ever since the industry started with ad-hoc
approaches, there used to be plenty of software products that needed to return to
a more documented and maintainable status thus creating a lot of re-engineering

Chapter 2 / Software Project Management 42

projects. Soon after, there were reverse engineering tools serving the developers
at different levels.

The lowest-level reverse engineering tool is a disassembler. A disassembler
takes executable code and produces an assembly language corresponding to it.
Actually, converting any lower-level representation to a higher level is a reverse
engineering task. What is more desirable is to create design models out of
existing code. Finally, requirements will be reached. Once requirements are
known, modern approaches can be followed to forward-engineer and re-create
the system. Of course the newer version is an improved version that is a lot
easier to maintain and change. Other quality parameters should be improved
also. Re-engineering is reverse-engineering followed by forward- engineering.

It is not only software products that can be re-engineered. This procedure was
also first discovered by the traditional “hard engineering” fields. Business
processes can also be re-engineered. If applied correctly, the effort can be
extremely useful for any service or manufacturing industry. Actually, it is a rule
to engineer the business process before any software-based automation is
requested. There have been very successful examples, especially among huge
enterprises for business Process Reengineering (BPR) applications. Such a
project starts with the analysis of the current process. The process analyst must
be an expert to conduct such a difficult procedure. Often involved are the
interviews with the personnel at different levels. There are so many human and
organizational factors that affect the acquisition of correct process knowledge.
Finally a model for the current process is created. Process modeling tools (or
workflow management tools) are used for creating the current process, followed
by the target process. A process model example created by such a tool is given
in Figure 2.4. It is then time for a transition from the current to the desired
process, and this transitioning process needs to be designed also. A key success
factor is concentrating on the business goals rather than existing company
structure or procedures.

2. 12 Summary
Software Project Management and its component activities were introduced.
Resources have to be allocated to activities that are scheduled in Project Planning
so that deadlines can be met with minimum cost and maximum quality. Risk
planning involves identification, assessment, propagation, prevention and
management measures. Quality is achieved by planned actions to assure better
software throughout the process. Staffing should consider the communication
links between any two members of a team as a sink for a fixed amount of effort.
Measurement is important to aid in the estimation and monitoring of the project.
There are size and function-oriented metrics. Various process and product
parameters can be measured based on such metrics. Software process maturity
provides a degree of determinism to product development. Parts of a project can
be outsourced through a sub-contract to an organization that is competent in
developing that kind of software. It is best to develop only what an organization

Component Oriented Software Engineering 43

defines as its “core competency” and outsource others. Maintenance is
conducted on finished code for any reasons to change the product. Configuration
management is applied through specific tools that organize access to any past
versions of code, data, and documentation units.

2. 13 Questions
1. Assume that you are the manager of a 5-year project, and, by the beginning

of the 4th year, according to the metrics collected, you can estimate that the
deadline will be missed at least for 6 months. What kind of corrective
measure can you take?

2. It is known that personnel turn-over rates are high. You are about to start the
development of a new project. You are also aware that there are competing
software companies that offer higher salaries than your organization. What
measures can you suggest to manage this risk of losing personnel in the
middle of the project?

3. For an example project you will define, estimate the complexity applying the
Function Points method. Write your assumptions about the project such as
number of inputs and other complexity parameters.

4. For the same project you have defined in question 3, estimate the effort and
time using the Lines of Code method.

5. For the project you have defined for question 3, estimate the effort and time
using COCOMO. State your assumptions about the problem type and your
selection of the model (basic intermediate or advanced).

6. There can be some indirect metrics for evaluating different quality factors
such as number of errors per KLOC. Can you propose metrics for
maintainability (ease of maintaining the system, through changes in the
code?).

7. Your organization is responsible for the maintenance of some software
systems produced also by your organization. Currently there are no new
projects in development and you have to keep some number of personnel
regardless of missing new projects. How would you decide which system to
re-engineer?

8. A re-engineering project is in progress. Starting from code, the reverse
engineering process has finally obtained a requirements model. What are the
factors that will make the forward engineering easier than a similar projects
first-time development?

9. In a traditional programmer team, how would you replace a librarian with a
configuration management tool? What would be the duties of the remaining
roles in the team for utilizing the tool?

10. After investigating several alternatives to acquire a software product,
including sub-contracting, reuse and outsourcing kind of options, you have
found the least costly alternative. Would this alternative be your decision, or
are there other parameters other than cost that you would consider?

Chapter 2 / Software Project Management 44

2. 14 References
[Albrecht 1979] A.J. Albrecht, “Measuring Application Development Productivity,”

IBM Application Development Symposium, Monterey, California, October 1979.

[Albrecht 1983] A.J. Albrecht and J.E. Gaffney, “Software Function, Source Lines of
Code and Development Effort Prediction: A Software Science Validation,” IEEE
Transactions on Software Engineering, November 1983, pp. 639-648.

[Baker 1972] F.T. Baker, “Chief Programmer Team Management of Production
Programming,” IBM Systems Journal, Vol 11, No. 1, 1972.

[Boehm 1981] Barry Boehm, Software Engineering Economics, Prentice Hall, 1981.

[FunSoft 2001] Funsoft users manual, Funsoft, 2001, Austin, Texas.

[Manzer 2002] Ayesha Manzer, Formalization of Core-Competency Processes for
Integration of Value-add Chains, PhD. Dissertation, Middle East Technical
University, July 2002.

[McCall 1977] J. McCall, P. Richards, G. Walters, Factors in Software Quality, NTIS
AD-A049-014, 015, and 016, November 1977.

[Paulk et al. 1994] M.C. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis, The Capability
Maturity Model: Guidelines for Improving the Software Process, Carnegie Mellon
University Software Engineering Institute, Addison-Wesley, 1994, Reading,
Massachussetts.

[Pressman 1997] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 4th
Edition, Mc-Graw Hill, 1997.

Component Oriented Software Engineering 45

Chapter 3
Chapter 3 Traditional Software Development

The introduction of the waterfall lifecycle enabled engineering methodology to
be carried over to the software field. Approaches that were pioneering the field
targeted structured programming languages as their coding media. Development
processes were mostly phased. Graphical modeling formalisms were employed as
practical aids to further comprehension. So much had been done in the
traditional age, and its techniques are still being used. Some of the products of
this era have been reengineered to their object- oriented versions.

System analysts conducted tasks similar to those of industrial engineers.
Dataflow diagrams were very important for software engineering as well as for
some other disciplines. Requirements and design models contained diagrams
reflecting different cross sections, which were actually different facets of the
system.

Requirements engineering has been very important as it is today. Feasibility
study followed requirements elicitation, then analysis, modeling and
specification. Some prototyping and validation investigation were also carried
out even before starting the design. Dataflow diagrams were first used in the
requirements, and then in design with different categories of details being entered
in each phase. Design could be conducted in two different abstraction levels:
first logical then detailed levels. Requirements dictionary and entity-relation
diagrams were the other two widely used instruments for requirements
specification.

Design activities started with revising the requirements model, refining the
dataflow diagrams, then conducting a data design utilizing the entity-relation
diagrams of the requirements study. After data, the next design “cross-section”
was structure. The architecture of the system was defined in blocks within a
control hierarchy. Finally internal details of the modules were specified as
functional details.

A very important phase in development is the integration phase. Often carried
together with testing, units were connected to the growing system after
completing their unit tests, one at a time, and the system integration test should
be conducted after every unit’s integration. Integration is a difficult stage, where
hard-to-find errors surface that have passed the unit tests before. Finally system
tests were conducted.

Chapter 3 / Traditional Software Development 46

3. 1 Looking back
The traditional approaches had carried the industry from its infancy days to the
object-oriented era. Although there were so many ad-hoc attempts accounting
for some of the failures in the industry, structured approaches were not that lucky
also. The bottleneck in the process appeared to be the requirements problems.
Also the general complaint about the waterfall habit that prevented the flexibility
required in adjusting to changing requirements is characteristic. Sometimes the
process has been too heavy and forcing excessive documentation to be produced.

So many huge projects were also completed with acceptable levels of success.
Some current approaches are basically an adaptation of the traditional
methodologies. It is not uncommon to meet process models that are somewhere
between spiral and waterfall. In the earlier years of the object-oriented trend, the
new modeling option was not trusted by everybody, especially for big projects.
Now this worry is fading away. Object-orientation is also being challenged by
newer alternatives. Evolutionary processes have replaced waterfall.

3. 2 Requirements
Also known as the analysis phase, requirements engineering has always been
critical to design. In this chapter, general characteristics of the traditional
approaches are being presented. Some peculiar methodologies may be following
different routes but we believe that a great majority of the approaches are being
represented in this chapter. So, the most important model used in requirements
that is also used in design is the dataflow diagram. Used with Entity-relation
diagrams and a requirements dictionary, dataflow diagrams allow a function-
oriented look into the systems where data view is also preserved.

A feasibility study precedes the requirements gathering. What is covered more
in-depth in this chapter is the modeling of requirements analysis. The modeling
can only be conducted after eliciting the requirements through activities such as
interviews and meetings.

3.2.1 Dataflow diagrams

The dataflow modeling is only concerned with the kind of information flowing
among the system modules. Other information answering when and how this
flow occurs are deliberately hidden. One common mistake students do is trying
to include the control information such as “if” conditions to guard the data-flows.
Also the order of execution is another example of mistakenly included
information in the wrong data-flow models. Because the diagrams are so simple,
a developer with less training is attracted to flooding the diagrams with other
kinds of information. Actually these diagrams only give one view; all by
themselves they cannot explain all aspects of an executable process – especially
the dynamic aspects.

Component Oriented Software Engineering 47

The data-flow analysis starts with defining the interface between the system and
the “external entities.” The system is seen as a single unit and the external
entities are identified that interact with the system. Then the nature of this
interaction is defined in terms of data flows, i.e. what kind of data flows, in what
direction, between one external entity and the system. Any connections among
the external entities are not shown because they are not included in the system to
be developed. The developer side is only responsible for the system so dataflow
diagrams should not include anything that will not be developed. External
interfaces however, need to be displayed for the context analysis of the system.
That is why this initial diagram is called the “context diagram” also referred to as
the level 0 diagram. As it can be guessed after introducing a level, such diagrams
are actually a system of diagrams hierarchically organized in levels. Figure 3.1
displays a level 0 diagram.

ATM
System

user

Central
bank

password

card

report

money

account no

transaction amount

account record

Figure 3.1 A context diagram example

For any oval that represents a “process,” a lower-level Data Flow Diagram
(DFD) can be drawn. The next level after the context is referred to as Level 1;
the “overview” diagram. Like the context diagram, this one also corresponds to
the whole system. Since the Level 0 diagrams contain one process, the lower
level can only have one diagram corresponding to the system. Three to five
levels are typical included in a project but there is no limitation to how deep in
hierarchy levels a system of DFDs can go. The developers should decide how
much detail to represent. In constructing a model, the goal is to understand the
system therefore unnecessary details should be hidden while the desired type of
details should be included. This principle guides the amount of refinement to
take place.

Before continuing with the example, some properties of the DFDs can be
introduced. Figure 3.2 depicts the four elements used in DFDs.

Chapter 3 / Traditional Software Development 48

Dataflow

Process

External entity

Data store

Figure 3.2 Dataflow Diagram elements

There is some variation in the representation of DFDs. Some sources show a
data store as a rectangle with only three sides drawn instead of the two shown in
Figure 3.2. Inclusion of the external entities is sufficient in Level 0. The lower
levels do not need to redraw them. Some CASE tools accept the repetitive
representation of the external entities in any level, especially in the overview
diagrams. It may be a syntax error if an external entity is shown in the lower
levels in some other environments. If they appear only in Level 0, this will help
with consistency: any component should be shown only once.

A dataflow cannot be repeated more than once in a diagram. Where a process in
a super diagram is detailed in a sub-diagram, the data flows coming in and going
out of the process should be repeated at the boundaries of the lower-level
diagram. This rule is an important rule referred to as “balancing the diagrams”
and is valid even going from Level 0 to Level 1. To ensure diagram-balancing,
before starting the lower level diagram, a box can be drawn to indicate the
boundaries of the new diagram and the dataflow arrows can be copied form the
higher-level diagram and drawn so that they cross the box boundaries. Their
connections will be completed as the internal processes for the new diagram are
defined and drawn inside the box. External connections for the arrows can be
left disconnected; in the higher diagram those connections have been introduced
anyway.

Other rules will be mentioned along with the developing example. In Figure 3.3,
the overview diagram (Level 1) for the ATM system example is shown. Note
that the connections on the process in Figure 3.1 are exactly duplicated with
respect to their directions and naming. Also should be noted the absence of
control logic; the particular operation the user selected cannot be traced and the
conditions that trigger a withdraw process or a balance inquiry process are

Component Oriented Software Engineering 49

unclear. If there is a chance that some data can flow between two nodes, it is
drawn in the model.

Level 1 diagram: ATM System

verify password

balance
processing

 withdraw

prepare reports

prepare query

card
password

money

verified ID

withdraw
amount

account ID

transaction
amount

present
cash account record

reports 1 2

3

4

5

balance
report

withdraw
report

Figure 3.3 Overview diagram for the ATM system

In Figure 3.3, the rectangle drawn around the DFD is titled on the left top to
indicate what process and what level this diagram corresponds to. It is also
considered good practice to number the processes to reflect their levels. For
example, the process “withdraw” numbered 3, will be detailed in a Level 2
diagram where the sub-processes will be numbered as 3.1, 3.2, etc.

Another rule is not to duplicate the same name on any two data-flows. This is
like declaring a variable twice in a program. If a data item enters a process, it
will not leave with the same name; the process must change the data somehow
therefore the transformed data leaves the process with a new name. Also all
data-flows should not be left unnamed, except in the case of connections on a
data store, where the name on the data store implies the same name on any
connection to it. Data-flows can split and reach different processes (or data
stores or external entities) but two different flows cannot join unless they arrive
at a process and the process produces a combined output.

Data stores can contain a single data item such as the current cash amount in an
ATM, or a more complex data structure. Usually they correspond to database
tables and records are retrieved in practice, rather than a field in a record. There
are different usages of data stores as to allow individual field accesses to a data
store that contains records of information. One other hesitation is about the
repetition of the data stores in different levels of DFD diagrams. The consistency
rule mentioned before applies here also; the developer should first determine

Chapter 3 / Traditional Software Development 50

what process owns this data store and then should let that process contain the
data store and should display it only inside that process.

The example will be extended to the next level for only one process in the
overview diagram. Actually if desired, there could be five different “Level 2
diagrams” produced, corresponding to the processes 1 to 5 in Figure 3.3. A DFD
will be shown in Figure 3.4 for Process 3 in Figure 3.3 modeling the “withdraw”
operation.

Level 2 DFD: 3. withdraw

check valid
amount

dispose money

update
account

account
d

dispose amount

money

present cash

withdraw
t

Prepare
withdraw report

withdraw report
3.1

3.2 3.3

3.4

Figure 3.4 Level 2 diagram for the withdraw process

The example can be extended for other processes in Level 1 and to further levels
to refine the processes in Level 2 diagrams. For demonstration purposes the
diagrams included so far will suffice.

Other kinds of information require different models. A common extension to
dataflow diagrams is the control-flow representation described in the next
section. Rarely used, control-flow diagrams accompany DFDs if temporal
management of events is important.

3.2.2 Control Flow Diagrams

Control is one of the essential modeling dimensions among the others; data and
function. Not frequently used unless synchronization and related timing is
important to model, the control-flow diagrams are only used with DFDs. A
finite-state machine can be assumed per DFD, receiving input signals from
sources such as buttons or data conditions produced by the DFD processes and its
outputs as signals and flags. Control-flow Diagrams (CFD) are superimposed on
DFDs. There are two approaches, allowing for control bubbles to mix with data
bubbles, or allowing control-flow interfaces between the DFD and the underlying

Component Oriented Software Engineering 51

state machine. To understand the control logic, the fundamental state machine
concepts must be digested first.

3.2.2.1 Finite-State Machine

There are cases when a software system has to know the history of the actions to
interpret the current input. In other words, with the same input data, the system
may have to respond differently based on what happened before. For example, in
a Windows application, when the mouse is released the system has to take an
action based on where the mouse traveled before and where the button was
pressed. To enable such an operation, the control software should keep track of
the state: the state should change each time the cursor enters or exits control areas
on the screen. If the state is known, the mouse release will trigger an operation
based on that state – the active area the cursor has entered. Figure 3.5 displays a
state machine that models the control logic of a vending machine disposing a
drink if sufficient coins are inserted. This machine is in the reset state meaning
that zero cents have been received so far. Subsequent insertions of coins carry
the machine to “next states” corresponding to the total money received. The state
of “35 cents” can be reached by receiving 25 cents and then 10 cents, or first 10
and then 25 cents. Alternatively, 7 repeated insertions of 5 cents can bring the
state to 35 cents. The machine will dispense a drink if it can reach the state “35”.

There is always a unique initial state (reset) but there can be more than one final
state where the machine halts and usually produces a related output. Some
machines would return to the reset state once a result is achieved thus eliminating
the need for a specific final state. In this case, the final state is equal to the initial
state. There have been two major modeling approaches with state machines.
Either the state transition generates an output that lasts for a very short time, or a
stable state is generating an output signal as long as the machine remains at that
state: output is active during a transition or during a particular state.

3.2.2.2 Ward and Mellor control flows

This is one approach to add the control information to the DFD models [Ward
and Mellor 1985]. A continuous control processing is assumed together with the
data processing. Bubbles representing data processing nodes are taken as a
template for the control units. The control processing nodes are again bubbles
drawn with dashed lines. Also the control item arrows are made of dashed lines.
There are control stores drawn like data stores but with dashed lines. This
treatment of control information requires some continuously updated data items
to be represented also. Such items are primarily data items but they help in
modeling the control logic. Therefore the “quasi-continuous” data flows are
introduced by Ward and Mellor, as data flow lines with double arrow heads
drawn in-line. Control-flows can trigger the start of data processes. Figure 3.6
displays the Ward and Mellor extensions to DFDs for modeling control-flow.

Chapter 3 / Traditional Software Development 52

5

10

15

20

25 30

5

10

5

5

10

10
10

25

10,25

5

5,10,25
5

25

25

5
10

25

25

finish

start

Figure 3.5 State machine for a soda vending machine

3.2.2.3 Hatley and Pirbhai control flows

This approach treats the data and control-flows a little more separate [Hatley and
Pirbhai 1987]. The interface between the two flow models takes place on the
DFD diagram, shown as thick bars in Figure 3.7. The dashed control-flows
ending at the vertical bars mean control-flows sent to the underlying state
machine. The dashed arrows coming out of the thick bars indicate control signals
coming out of the state machine as output signals. The control-flows can be
signals generated by external events such as push buttons or sensor values, or
generated by the state machine as signal outputs. Also data processes can
produce control signals based on data conditions.

The overview diagram shown in Figure 3.4 can be enhanced with control-flows
to demonstrate the Hatley and Pirbhai notations. The “verify password” process
is considered for control-flows such as an input for “card inserted” event, an
output from “verify password” process to the control mechanism for “invalid
password” data condition, and an output from the control mechanism to be used
as the “card reject” signal. Also a process-triggering control-flow (start
verification) is included suggesting that the “card inserted” signal will initiate the
process “password verification.” The mentioned control-flow enhancement is
displayed in Figure 3.8. Of course, more flows could be generated but only the
small demonstrative set is included. It should be remembered that the vertical

Component Oriented Software Engineering 53

bar represents only an interface to the control mechanism that could be provided
as a finite-state machine, as well.

 Quasi continuous
data flow

Control process

Control item

Control store

Figure 3.6 Ward and Mellor notations for control flow

Control flow

Reference to control
specification (shown
with connected
control flows)

Figure 3.7 Hatley and Pirbhai notations for control flow

Chapter 3 / Traditional Software Development 54

Level 1 control flow diagram: ATM System

verify password

balance
processing

 withdraw

prepare reports

prepare query

card
password

money

verified ID

withdraw
amount

account ID

transaction
amount

present
cash account record

reports 1 2

3

4

5

balance
report

withdraw
report

card inserted

reject card

invalid
password

start
verification

Figure 3.8 Hatley Pirbhai enhancements to the overview diagram in Figure 3.3.

3.2.3 Entity relationship diagrams

Some data items have been introduced in the DFD diagrams. They may
correspond to important data elements in the requirements model. Actually some
kind of data modeling facility is required. With or without the DFDs, the entities
in the system requirements are modeled with their inter-relationship in Entity
Relationship Diagrams (ERD) [Chen 1977]. Actually a starting point for the
requirements modeling is the parsing of the requirements descriptions. The
nouns are candidates for data items or external entities in DFD and the verbs
correspond to processes. Some approaches may start with data modeling rather
than DFDs.

Actually ERDs are a common way to “data modeling.” The important data
objects processed by the system are identified, their internal attributes are
defined, and the relations among those data objects are described. The relation
between two entities is further described in terms of cardinality and modality.
Cardinality of a relation specifies how many of one entity are related to how
many of the other entity kind. These quantities are represented as one or many.
ERDs do not specify exact numbers; what is important is the number being one -
or more than one - in which case it is said to be “many.” The cardinalities are
one-to-one, one-to-many, and many-to-many. Later in design, these
specifications will have very specific implications. Modality enlarges the
cardinality with the inclusion of “zero or…” meaning to the one and many
specifications. Optional modality means that an entity can be in a relation but it

Component Oriented Software Engineering 55

is also possible that the entity will not take part in the relation. Figure 3.9
displays a relation with cardinalities and modalities, between entities.

professor course teaches

department is member
of

One: cardinality

At least one: modality

Optional: modality

Many: cardinality

Figure 3.9 An example relation between entities

To figure out the cardinalities, one entity should be considered to determine the
cardinality of the other. For example in the professor to department relationship,
the cardinality on the department end can be found by considering “one”
professor’s relationship with the plurality of the department. Of course the
semantics of the diagram can be debated. The idea is to allow the modalities and
cardinalities as the system specification suggests. For example, the optional
relation between the professor and the department could be the fact for the
project, whereas in general one would assume that a professor should always be a
member of one department and a department should have at least one professor.

Entities can have attributes. Each attribute can be drawn as an oval outside the
entity rectangle. The ovals are connected to entities by lines. CASE tools of the
traditional era provided facilities to draw DFDs and ERDs. Also some compilers
that include a database facility provide a graphical modeling of the tables and
their relations. Although data modeling is an abstract task, in most cases their
outcome is translated into database systems due to the wide availability of the
technology.

The early ERD definitions included attributes for the entities that can be drawn as
ovals. Figure 3.10 depicts this representation for the “professor” entity selected
from Figure 3.9, as an example. The relations grew in the direction of Object
Oriented (OO) concepts such as inheritance. The classification mechanisms in
the class diagrams of OO models are later included in the ERDs.

3.2.4 Requirements dictionary

Also called the data dictionary [Yourdon 1989], this facility helps in the
organization of the concepts used in the DFD or ERD models. Especially the

Chapter 3 / Traditional Software Development 56

data-oriented items such as data-flows and entities are explained in the
dictionary. There is an entry per item with its name and any other names used
throughout the requirements. An entry is shown with its attributes, and whether
it is input or output to the defined processes. There is no common format for a
requirements dictionary. This facility could be created using a word processor,
but CASE tools include it and allow links back and forward from this dictionary
to other graphical models. During the analysis task, clicking on a data-flow in a
DFD a tool should be able to direct the developer to the dictionary where more
explanations can be found. Similarly, clicking on a process should take the
developer to another text-based medium; the procedural specification for the
process.

professor

name

salary

position

publications

start date

age

Figure 3.10 Attributes of an entity

3.2.5 Procedural specifications

So far the processes were only defined but not described. The ovals in a DFD
correspond to processes and they need more detail for the requirements
specification. There can be a variety of methods to describe how a process will
execute. Care should be taken not to describe the solution but the problem
definition. Step-by-step description of the actions can be provided in plain
English. A more formal medium is “Structured English.” Also known as
procedural specification language, this notation takes the control keywords from
a programming language such as C and fills in the statements in plain English.
The entities and data items introduced in the previous models can be used as
variables in this specification. For functions requiring mathematical functions or
tables, such representations can also take place in procedural specifications.

The procedural specifications in structured English are presented below for the
example shown in Figure 3.4, Process 3.1: Check Valid Amount. Keywords
taken from the Pascal language are printed in boldface in this listing.

Get account record
If desired_amount > account.balance then
Begin
 Give message (“balance not enough”);

Component Oriented Software Engineering 57

 Exit;
End
Get present cash
If present cash < desired_amount then
Begin
 Give message (“not enough cash in the ATM”);
 Exit;
End;
If dispense(desired_amount) AND
 Update balance(desired_amount) then
 Prepare withdraw report (desired_amount);

3. 3 Design
Once the requirements definition is satisfactory, design activity can begin. This
is valid for individual modules or for the whole system. The common pattern is
to conduct data design first then structural, followed by interface design, and
finally procedural design. Before modules can be dispatched to teams for
development, common data structures should be defined; data design identifies
the “global” entities for the access of different modules.

Data design includes the data structures and data tables for the database
management systems. If abstract data structures such as stack or queue elements
were defined in requirements, it is time to guide their constructions in terms of
linked lists or tables, for instance. Now, rather than concentrating only on the
pure definition of correct logic, efficiency should also considered here. For this
reason previous definitions could be altered or new data structures can be added.
The information contained in the ERDs guides the design of the tables and their
links in terms of keys and indexes. Normalization of the tables is an issue here;
some normalization is necessary but again due to efficiency reasons, sometimes
normalization is deliberately violated. Normalization is a compacting operation
performed on a relational data model where no information is repeated and one
field may contain at least a single data item.

DFDs are revisited and refined in the design phase to include the implementation
level details. The goal is to arrive at a structural specification of the system with
modules corresponding to functions at various levels of abstraction. The recent
view about a program: a hierarchy of functions controlling the execution flow
through function calls is gradually obtained. After the data design, it is now the
time for structure (or architectural) design. Dataflow diagrams [Pressman 1997]
are the starting point for this effort. The transform mapping method introduced
in the following sections suggests the construction of “structure charts” based on
the information contained in DFDs.

Chapter 3 / Traditional Software Development 58

3.3.1 Structural design

There are different ways to represent the architecture of software systems.
Structure charts are a simple way of achieving this. The main view a structure
chart conveys is the control hierarchy among the modules.

When mentioning modules, the strategically important issue of “modularity”
[Dennis 1973] is invoked. Design is a fundamental activity - if not the most
important – a good engineer must master. When design is mentioned, probably
the heart of the problem is the modularity. This issue is also present in data
design. Modularity needs to be analyzed based on vital parameters to produce
good designs. Those parameters are:
1. Hierarchy,
2. Cohesion, and
3. Coupling.

Modularization is the decomposition of a system into its components. This is
also the crucial step towards the quality of the system. An obvious advantage of
good modular design is the ease in locating errors.

How should the modules be defined and the boundaries demarcated? An old
story about wrong conceptions for modularization can be mentioned here: When
the team leader asked the programmers to decompose a long piece of code into
modules, a programmer unfamiliar with the concept asked about the typical
length for a module. The answer was 30 to 40 lines. The programmer counted
30 lines and measured their height on the printed source code listings. He then
drew a line separating the code into chunks, for every so many inches. Then, he
organized those chunks as subroutines so that the main program could call those
“modules”, hence presenting a modular structure!

The principle of hierarchy suggests the correct spacing of a module with respect
to abstraction levels, as opposed to simple distance. When the system is
decomposed, the top-level modules should be defined first, containing high-level
decisions. It should also be noted that the control propagates from higher-level
modules to lower-level modules. Vertical connections should be organized to
reflect the correct hierarchy. The early work about design by herb Simon [1967]
explains the importance of hierarchical decomposition.

Cohesion is the degree to which a module does only one task. A good module
should not assume different functionalities and should not contain items that are
used for different purposes. Coupling is the degree of dependence to other
modules. Neither aspects can be directly and objectively measured but there are
fuzzy metrics for their evaluation. It is desired to have high cohesion values and
low coupling values for any module. There is some trade-off involved for the
designer due to the racing conditions. If there is zero coupling, then there cannot
be a system – modules are not connected. On the other hand, if there is perfect
cohesion for every module, then to conduct the systems goal collectively, some
coupling is needed. The other important duty of a designer is the optimization.

Component Oriented Software Engineering 59

Two modules can be combined to reduce coupling but cohesion is sacrificed. It
is a common understanding to organize cohesive modules and compromise a
little on coupling. Figure 3.11 relates the three design parameters to abstraction-
level and horizontal-connectivity.

A
bs

tr
ac

tio
n

le
ve

l

Horizontal relations

Data item or
procedural detail

module

vertical cohesion

vertical coupling

horizontal cohesion

horizontal coupling

Figure 3.11. Design parameters and relations in two dimensions

For example, a module that calculates both sine and cosine is not cohesive. Also,
to call this module, if a flag is being set to select between the two functions, this
constitutes a “control coupling” which is not a desirable case. The caller would
have to send for example a “1” to initiate a sine function or a “0” to initiate a
cosine function. A better design suggests separate sine and cosine modules,
where both are cohesive, and to refer them only as the minimum information that
is the inevitable input value needing to be sent. Consequently, coupling is also
reduced. The above example was about horizontal cohesion. In the
decomposition demonstrated in this chapter through structure charts, the
couplings are mostly vertical.

In another example a lack of cohesion in the vertical dimension is presented:
Assuming old fashion text-based user interfaces, we used to present a list of
items and prompted the user to type a number corresponding to the desired item. .
The following code segment combines the top-level menu logic and formatting
of the input character:

 input := “0”;

Chapter 3 / Traditional Software Development 60

While (input > “0”) do begin

 writeln (“enter 1 to add a new person”);

 writeln (“enter 2 to delete a person”);

 writeln (“enter 0 to exit”);

 write (“ ? : “);

 readln (input);

 {*** character manipulation begins ***}

 If input <> “0” then begin

 if input in Control_Character_set then

 execute-control (input);

 else if (not ((ord (input) – ord (0)) in [1, 2])) then

 give-error-message(input);

 end {if};

 {******** end of character manipulation ********}

 Case input

 “1” : add-person;

 “2” : delete-person;

 End {case};

End {while};

What this segment tries to accomplish is to present a list of action items, obtain
the user’s selection, check for errors in the user input, and finally dispatch the
desired function. Except for the character manipulation segment that is actually
simplified in this example, the module is cohesive. It is intended to serve the
top-level menu functionality. In order to conduct this duty, the codes attempt to
carry out very low-level operations for error checking. This character
manipulation for error checking reduces the readability and introduces low-level
processing to the highest-level module of a system. Although error checking is
an integral part of the menu processing, we do not accept it as a cohesive part of
this particular function. Lack of vertical cohesion is evident. Rather, a single
statement could call another function that would do the error checking. The
name of the function though, will fit in the module, as error checking (not its
details) can be accepted as part of the menu processing function. So, a revised
version of the above code is given below that improves vertical cohesion:

input := “0”;
While (input > “0”) do begin
 writeln (“enter 1 to add a new person”);
 writeln (“enter 2 to delete a person”);
 writeln (“enter 0 to exit”);

Component Oriented Software Engineering 61

 write (“ ? : “);
 readln (input);
 if check-error (input) then
 Case input
 “1” : add-person;
 “2” : delete-person;
 End {case};
End {while};

After the completion of design, the natural task to follow is coding. The
traceability of requirements or design concerns depends on the programmers
complying with the design and coding conventions accepted by the organization.

3.3.2 Transform Mapping

With this technique, a DFD can be mapped to a structure chart [Pressman 1997].
When done, the processes in a DFD are converted to modules in a structure chart.
There may be extra modules generated in the structure chart, or more than one
process could be represented in a module. The first step is to define the flow
boundaries in a DFD. There are two kinds of DFDs so before drawing the flow
boundaries, the type must be recognized as a “transform flow” or a “transaction
flow.” If the DFD is of transform flow, the boundaries are drawn for the
following processes:
1. input flow
2. transform center
3. output flow

This means, a set of processes in the DFD are considered as part of the input flow
and other two sets are considered for the transform center and the output flow. A
structure chart for the system is started with the top-most module that controls
the three DFD regions with one control module representing each region. Under
those control modules, all the DFD processes are drawn as rectangles, in some
order.

To demonstrate the technique, the overview diagram in Figure 3.4 is redrawn in
Figure 3.12 with the flow regions separated. Of course, as there can be different
modularization decisions for the same problem there could be different boundary
determinations. For example, Process 2 “balance processing” could be decided
to be in the input flow by a different designer. Likewise, “withdraw” (3) could
belong to the output flow region. Process names and insight will help in such
decisions.

A first-cut structure chart is immediately constructed. Since this example is
determined to be of a “transform kind” flow, the main module and the control
modules for the three sections are created. Figure 3.13 depicts the top-level
control modules and other modules mapped from the processes in Figure 3.12.
The three modules under the “operations” are treated as peers. However, a
designer considering for example, “withdraw” as a control module for the

Chapter 3 / Traditional Software Development 62

“balance processing,” should place “balance processing” under “withdraw”
rather than next to it.

Level 1 diagram: ATM System

verify password

balance
processing

 withdraw

prepare reports

prepare query

card
password

money

verified ID

withdraw
amount

account ID

transaction
amount

present
cash account record

reports 1 2

3

4

5

balance
report

withdraw
report

INPUT

OUTPUT

TRANSFORM
CENTER

Figure 3.12 Flow boundaries in the overview diagram

ATM

input manager operations reporting

verify
password

prepare
reports

balance
processing

withdraw

prepare
query

Figure 3.13 Structure chart corresponding to the overview diagram in Figure 3.12

Continuing with the mapping process for the example, the information contained
in Figure 3.4 is considered for replacing or enhancing the “withdraw” module in
Figure 3.13. Typically, the DFD in Figure 3.4 is analyzed for flow boundaries
and the three control modules can be inserted under “withdraw.” At this level,

Component Oriented Software Engineering 63

the control modules can also be omitted and the few processes can directly be
connected under “withdraw.” Unfortunately, the simple example in Figure 3.4
makes it difficult to determine the flow boundaries. Instead, the processes are
directly mapped to modules controlled by “withdraw” in Figure 3.14.

ATM

input manager operations reporting

verify
password

prepare
reports

balance
processing

withdraw

prepare
query

update
account

check valid
amount

prepare
withdraw report

dispose
money

Figure 3.14 Enhanced structure chart for the ATM example

The transaction flow kind of DFDs corresponds to systems where there is a
decision process that selects one among the possible action paths. For those,
there is again an input flow region, but the transaction center now controls the
individual action paths rather than an output flow region. So there is an input
region, a transaction module and action paths take place under the transaction
module. Any region in transform or transaction flow DFDs, are subject to a
recursive evaluation: they can in turn be other transform or transaction flows.
While the structure chart is growing downwards starting with the system as the
root of the chart, the flow type decision will be repeated and one of the
decomposition templates will be repeated under many modules.

To demonstrate the transaction flow based mapping, the ATM problem and the
overview diagram for it will be slightly changed. Figure 3.15 displays the
alternative DFD to Figure 3.3 and the flow boundaries drawn with respect to
transaction flow regions.

Chapter 3 / Traditional Software Development 64

card
password

money

verified ID

transaction
amount

account ID

amount

account record

transfer
6

balance
7

dispose
5

select operation
2

verify password
1

balance
report

INPUT

ACTION PATH 1

TRANSACTION
CENTER

get amount
3

get dest. acct.
4

account info

ACTION PATH 2 ACTION PATH 3

Figure 3.15 Overview DFD for an ATM example with transaction flow

characteristics

The input flow and the transaction center regions are mapped to corresponding
control modules arranged for transaction flow. Figure 3.16 depicts these control
modules and the action paths controlled by them. It should be noted that a lower-
level module can be called by more than one module that take place in any kind
of flow organizations or at any levels. The “get amount” module is an example.
It is controlled from two higher-level modules that belong to different action
paths (withdraw and transfer).

Vertical connections represent the control relation. Higher modules control the
lower ones. Under the module that controls an input region, for example, the
corresponding processes in the DFD should take place in an order that would
suggest a horizontal positioning if there is no control relation, or top-down if
there is. For the case where there is a control relation, the processes that are
closer to the center (transform or transaction center regions) will be placed closer
under the control module. This is usually in reverse direction with the dataflow
arrows for the input flows. For output flows or action path regions, usually this
control direction (top-to-down) is the same as the dataflow directions in the DFD.

The main concern in a structure chart is in determining what module controls
what other. Although the structure concept hints at the composition relations
(what module owns what other), a designer should think more in terms of who
calls who. The higher-level modules call the lower-level ones, and optionally
parameters for either direction can be placed next to the connections in a
structure chart. The parameters are presented as little arrows with the data or
control-flow name on them.

Component Oriented Software Engineering 65

ATM

verification dispatch

verify
password

dispose

withdraw balance
processing

money
transfer

balance

get amount

get dest.
acct.

transfer

Figure 3.16 Structure chart for a transaction flow type ATM example

A final consideration on the transform mapping can be mentioned about the
combined representation of the structure charts in contrast to the separate
dataflow diagrams. The above-defined process will actually work if all the DFDs
were joined in a huge diagram. Such a diagram may be too difficult to construct.
Since the recursive application of the “flow kind and boundary determination”
define a hierarchical order, the system of DFDs can be used without having to
combine them. Top-level flow boundary determination can correspond to the
overview diagram. Small structure-charts will be produced for the lower-level
DFDs. These small structure-carts will replace the individual modules in the
initial structure chart corresponding to the overview diagram – thus enacting a
refinement step. Some region in the structure chart can be constructed based on a
joined set of DFDs, rather than considering all the DFDs in separation or in
integration.

3. 4 Coding and Debugging
A disciplined structure to coding is very important for the lifecycle of the
software, no matter what kind of platform was used for the development of the
code. There will be need to review the code, for modifications or additions. A
maintenance programmer studies the documentation and the existing code before

Chapter 3 / Traditional Software Development 66

any modification. Any written code should be easy to read and understand. A
programmer should organize his code quality in a way where others could easily
maintain it.

There is no universal standard style for code writing therefore the team should
agree upon the rules and their own protocol before starting the development. The
components for effective coding can be listed as:
1. comment lines
2. code writing structure
3. meaningful naming
4. structured programming elements

3.4.1 Comment lines and code formatting

Comments are vital for the understandability of codes. There should be module
headers, descriptions for the code lines, and spaces around cohesive segments.
Special characters usually surround module headers as a box containing
descriptive lines. Typically, the header includes the name, functionality,
input/output, and dates for the modification history for the module. Control
structures such as loop and if statements should be explained through comments.
Indentation is used to delineate the blocks of statements that should stay together.

3.4.2 Structured programming

For the readability and maintainability of the code, “structured programming”
structures must be used. These structures omit the “go to” statements and they
have a single entry and a single exit points. The three fundamental structures are
as follows:
1. sequential
2. conditional
3. repetitive

The conditional structures are implemented by the “if” and “case” statements. If
statements are used to test only a single condition. They can handle two
conditions when accompanied with the “else” clause. Multiple conditions are
possible through a nested if-then-else or a case statement.

Repetitive blocks are loops, of which there are three kinds:
1. Loops that iterate for a certain number of times (for loops)
2. loops with top-tests that could repeat the iterations for zero or more times,

depending on the condition (while loops)
3. loops with a bottom test that repeat for at least once (repeat-until or do-while

loops)

The development will be more efficient if only such blocks are used without “go
to” statements. Appropriate commenting should accompany such structures also.

Component Oriented Software Engineering 67

3.4.3 Debugging

After the testing phase finds errors, debugging takes place to find the cause of the
errors. Debugging is very difficult and often frustrating. It is usually the
programmer of the code segment who debugs it. Spending time and being
intimate with the segment, the programmer often overlooks some causes that may
be more obvious for an outsider. It is not uncommon for a different person to
quickly determine the cause that took an inordinate amount of effort for the
initial developer.

Debugging facilities are an important and recognized part of development
environments. Debuggers allow for a controlled execution of a code segment
where the statements can run one at a time and allow for the examination of
selected variables as they change during the execution. Breakpoints can be
installed so that a group of statements can run and the execution stops for
examination. Some experienced programmers apply conventional techniques
such as implanting output statements to monitor the values on selected variables,
for debugging purposes. Some believe that if advanced debugging techniques are
used, something is already very wrong, i.e. an organized code should require
minimal debugging. However, at some point, there will be a time when all the
educated guesses for diagnosis get exhausted and a debugger must be used in an
attempt to systematically find the source of the problem through “brute force” as
a last resort.

A couple of popular approaches to debugging are backtracking and cause-
elimination. In backtracking, the problematic locality in the code is taken and the
code is manually traced back until the cause is found. This technique could be
useful for small programs, but can become unmanageable for big programs. In
the case of cause-elimination, possible causes are stated and the program is tested
with different data to prove or disprove the cause candidate. These approaches
can also utilize a debugger tool.

Once the cause of an error is found, the bug should be eliminated. Care must be
taken not to introduce new bugs while repairing the code. Also, proactive
thinking will help in locating other causes possibly produced by the erroneous
logic that is responsible for the bug just fixed.

3. 5 Testing and integration
Testing is conducted for finding errors. For reasonably complex software units,
it is practically impossible to prove that no more errors exist. The more tests are
conducted, the more errors will be found. The rate for finding new errors will
decrease as the process continues. While errors are found, a repair operation
must go hand-in-hand. It gets more difficult to test to find more errors when the
discovery rate decreases. Testing is a costly procedure. Figure 3.17 displays the
idealized and practical error discovery rates.

Chapter 3 / Traditional Software Development 68

time

N
um

be
r o

f d
is

co
ve

re
d

er
ro

rs

Begin testing

realistic

idealized

Figure 3.17 Error discovery rates

Testing is the vital tool for quality assurance, validation, and verification
procedures. There are different approaches for different levels of activities.
Testing also participates in the planning effort: before development, a test plan is
prepared. Often the developers are requested to design the test cases along with
the design, and sometimes with the coding tasks. Extra code is written to
conduct the tests and data modules are generated. Even we might want to
consider the whole lifecycle interwoven with testing; the “V Process” model
displays such a view as shown in Figure 3.18.

There are testing personnel in a software organization. The team may have a
dynamic structure; composing per project, out of different technical personnel.
Some organizations have test engineers and a constant testing group. It is usually
preferred to have a unit tested by people other than the developers of that unit.
This is due to human psychology; the producer of the code will test it to show the
superior quality in terms of less errors whereas a tester will conduct the testing to
find more errors. There are also tools for testing and test case generation. Some
modern CASE tools have the testing ability as a built-in feature.

3.5.1 Testing approaches

Depending on the nature of the problem, the amount of effort dedicated, and
what kind of errors we are after, different testing techniques can be employed. In
general, based on the evaluation of modules and how they are treated in the
testing strategy the white box or black box techniques can be mentioned. The
black box technique does not consider the internals of a module. The external
definition in terms of inputs and related outputs are the information utilized by
the tests. This is very much like the component-based approaches where only the
interfaces of the components are known and internals are hidden. White box
technique considers the internal details of a module and tries to test every unit
inside.

Component Oriented Software Engineering 69

requirements

design

coding

system
testing

integration
testing

unit testing

Figure 3.18 The V Model

In black box testing, the system is an interconnection of modules and the
information about the modules consists of the functional definition that binds the
output to the input of that module. Such tests rather find integration errors, and
also module errors but without being able to pinpoint the error’s location inside a
module. The cases when black box testing is preferred are if and when:
1. the module internals are not known such as in the acceptance testing of a

component
2. the functional definition of a module in terms of its inputs and outputs is

available explicitly
3. a hierarchy of test stages is planned where first the faulty modules are to be

identified
4. the test is more integration oriented rather than unit oriented
5. prohibitive costs preventing the tests to proceed towards lower-level details

White box testing ideally would try any possible execution sequence for a
module. This means every branch in the code is taken and every combination of
input values is tried. This desire is not realistic because of the prohibitive
number of test cases required even for trivial pieces of short code. Therefore
white box testing techniques usually compromise by proposing a reasonable
amount of testing while trying to cover a meaningful representation of the
complete picture. One such strategy is to test every statement in the code
segment, at least once.

3.5.2 Basis path testing

Given a code segment, one should determine the possible execution sequences so
that test cases can be prepared to drive the program to visit every statement at

Chapter 3 / Traditional Software Development 70

least once. Graph based techniques are utilized in finding the set of execution
paths that cover the whole program. This brings another question: how many
independent paths exist in a programs flowgraph? If the answer is known, and
the indicated number of paths is determined then “basis path” testing can be
applied. A test case will be generated to force the program to traverse the set of
independent paths.

To answer this question and also find a set of independent paths, the program
segment is converted to a flowgraph. This is achieved by representing statements
as nodes and execution order by edges. It is easier to convert the flowchart of a
program to a flowgraph. Table 1 introduces an example program for finding the
basis path options.

Table 1. Code Segment for program menu processing
Selection := 0;
While (selection < 5)
 DO BEGIN
Read (Selection);
If not (selection in numbers) then exit
Case selection
1: Add;
2: delete;
3: modify;
{else do nothing – by default}
end {case}
 END; {while}

Figure 3.19 presents a flowchart drawn for the code in Table 3.1. The earlier
flowchart notation did not include a symbol for “case” statements. The diamond
shape that is defined for the “if” statement is used, with multiple (4 in this case)
out flows, to represent the case statement. Actually this complex statement can
be implemented through a series of “if” statements. The result (number of paths
to test) would not change.

The set of independent paths also define the complexity of a program. There are
different complexity measures and this one is called the “cyclomatic complexity
[McCabe 1976].” Cyclomatic complexity is equal to the number of independent
paths. It can also be found by adding one to the number of decision points.
Another way of calculating this number is by counting the nodes (N) and edges
(E) in the flowgraph (the flowgraph corresponding to this problem is presented in
Figure 3.20) and using the formula:

 Cyclomatic complexity = E - N + 2 3.1

This is equal to the independent loops in the graph. To arrive at the cyclomatic
complexity, the internal loops can be counted and added to one. This final one
can be thought of as the count for the external loop. It can be seen that a case

Component Oriented Software Engineering 71

statement produces loops for each case selector. Therefore for the purpose of
cyclomatic complexity or the basis path determination, a case statement is
equivalent to a set of nested if statements.

selection = 0

selection
< 5 ?

read selection

is selection
in numbers

delete modifyadd

1

2 3

4

start

no

yes

no

yes

a

b

selection=
c

{else
do

nothing
by

default}

Figure 3.19 Flowchart for the program in Table 3.1

The decision points are important. Represented as diamonds, they have been
marked with letters (a, b, and c). These elements play the key role in drawing the
flowgraph for this program as shown in Figure 3.20. The rules to convert a
flowchart to a flowgraph are:
1. represent every box or diamond with a node
2. connect the nodes with edges corresponding to the arrows in the flowchart
3. simplify the graph by deleting the nodes (and their connections)

corresponding to boxes in the flowgraph. In the basis path analysis, nodes

Chapter 3 / Traditional Software Development 72

other than decision points are not important (every deleted node also cancels
an edge so the final evaluation value of Equation 3.1 does not change)

4. for each decision point that forks the operation flow, introduce a “join” node
(otherwise, the arrows joining with each other in the flowchart cannot join in
a flowgraph)

a

a'

b

b'

c

c'

Figure 3.20 Flowgraph for the example

Actually decision points in the program affect the independent path count
through contributing loops. Having two outgoing flows, an “if” statement
introduces only one loop - with or without an “else” clause. So the contribution
of a decision point to the complexity is its fan-out minus 1 (out degree -1). Also
should be noted that a decision node is terminated with a “join” node that has the
equal fan-in with the corresponding decision node’s fan-out. The if statements
count as single decision points each, but the case statement in the example (node
c) counts as 3 decision points. Finally, loop control statements need to be
addressed as conditional structures. They count as single decision points.

In the example above, the cyclomatic complexity is 6, applying any of the
described three techniques:
1. Decision points +1: the nodes a, b, and c in Figure 3.20 correspond to the

while, if, and case statements, respectively. The case statement has 4 out-

Component Oriented Software Engineering 73

flows thus contributing 3 counts to the result. Decision points = 5.
Cyclomatic complexity = 6.

2. E - N + 2: E = 10, N = 6, 10-6+2 = 6.
3. Number of loops: 5 inner loops + 1 = 6.

3.5.3 Other test types

Black box and white box approaches were discussed, regarding modules. Unit
testing corresponds to modules before they unite with the others for integration.
Integration testing is a difficult development stage, where errors surface that were
never thought about. Actually testing and integration usually go hand-in-hand. It
is not recommended to finish the development and test at once as the “big bang”
approach defines. Due to the non-linear characteristics of the complexity-size
relation we prefer to locate errors in smaller units of code. An incremental test
and integrate iteration is carried out. Any new module is first subject to unit test,
and then it is integrated to initiate an integration test. Regression testing is also
employed, to explore the unseen side effects of a new addition to the remote units
tested before. This kind of tests defines the repetition of the previously
conducted tests due to a new modification.

Validation tests serve the questioning of the requirements itself (are the
requirements valid/correct?). Verification is done through testing the developed
codes compliance with the validated requirements. Those two kinds of testing
often get pronounced together and sometimes as an acronym: Verification and
Validation (V&V). System tests are conducted after integration, over the entirety
of the product. Verification tests can also be system tests, if the coverage is
defined by the complete requirements.

Once the product is ready to pack, it is tested at the developer’s site. Users can
contribute by observing and commenting, even conducting the tests. This kind of
a system test is called the Alpha Test. A similar test conducted at the customer’s
site by both of the stakeholders is the Beta Test. The beta version of a software
product means that it is distributed with the sole purpose of gathering error
reports from the users.

3.5.4 Integration

The complexity of software development is proportional with the size, but in a
fashion that exceeds a linear relation. Integration can account for the extra effort
on top of a linear addition of the complexities corresponding to the modules.
Most of the projects face a problematic time after a long honeymoon with unit
development, once they arrive at the integration stage. Some preventive
measures will help ease this difficult task:
1. Specify the interfaces even during the earliest decomposition activity
2. Obey the less coupling / more cohesion laws
3. Avoid side-effect causes such as global variables, uncontrolled access to data

structures, while creating interfaces whenever different layers are present.

Chapter 3 / Traditional Software Development 74

For example, a file input/output facility should be organized as an interface
layer between the file access calls and the rest of the software.

Basically there are two strategies to integration:
1. top-down and
2. bottom-up
3. Also a mixed approach can be added as a third option:
4. the sandwich method

The top-down strategy suggests an approach of starting with the unit coding and
testing of the top-most level module. Any module needs connections. Except for
the lowest-level modules, all the modules control lower-level modules and
depend on them. To be able to test a higher-level module, we need the lower-
level modules. But with the top-down progress, they may not be available at the
time of the testing. To fill this gap, “stubs” are written that imitate the lower-
level modules with almost no functionality inside. The stubs merely stand for the
connections and they return dummy values to the superior module just to make it
execute. A breadth-first order is followed for the test-and-integrate activity.

The bottom-up strategy is the reverse of what top-down prescribes: lowest-level
modules are first tested and integrated with the immediate superior module and
the hierarchy of the structure is composed towards the top. This time the higher-
level module may be missing and it would be impossible to drive the modules
under test. A “driver” is written that could act as an executable program and
control the modules under test. Figure 3.21 shows the driver and stubs for two
integration approaches.

module under

test

stub 1 stub 2

driver

module 1
under test

module 2
under test

Top-down integration Bottom-up integration

Figure 3.21 Driver and stub usage in integration schemes

In general, any phase of a development is preferred to conduct a top-down
pattern. This is due to the holistic view that presents the system as a whole, in
the beginning and later introduces lower-level details in a hierarchical order. If
for some reason, the fine-grained worker modules are already present, one may

Component Oriented Software Engineering 75

select the bottom-up strategy. In a different case, in which the intellectual
control is maintained through a top-down approach and some technologies are
required to be exercised at the lower-levels of the architecture, the sandwich
approach is appropriate. Applied widely, this last option requires good judgment
on how the integration proceeding from two directions will meet. In other words,
the decomposition assumed to be present before the integration starts should
remain stable throughout for an efficient integration process.

3. 6 Maintenance
This is an interesting phase in the lifecycle of a software product. Although
software does not wear by usage there is still so much room for maintenance. A
simple definition for maintenance can be any modifications conducted after
product delivery. There are different reasons for getting involved with this
expensive kind of effort. First of all, there will be defects discovered as long as
the software is in use. There may be newly discovered opportunities if the
current version of the product is adapted to other functional requirements or other
platforms, for instance. Some basic reasons for undertaking maintenance task
are:
1. corrective
2. adaptive
3. preventive

Of course this list can be extended and its items can be further classified.
Corrective maintenance is the repairing of known defects. Any software product
has an accumulated list of errors throughout its usage history. Adaptive
maintenance involves the modification to port the software to another operating
system or platform. Technologies change so fast and users expect to solve the
same problem using new technologies. A program developed for early operating
systems would be required to run on windows, then in a client-server
architecture, and finally to run as an Internet application. There may be
regulatory/legal changes the business environment has to cope with and the
software automating the business has to adapt to such changes. Preventive
maintenance is to modify the software so that it has a better structure to avoid
defects to surface later. In other words, before the errors make themselves
known, they are eliminated or the less structured parts of the software are
improved so that it is less likely to contain defects, making it easier to fix.

A software complexity property should be remembered here that changing a line
of code is more expensive than creating it for the first time. Especially for a
finished development, one might try to avoid such trouble. On the other hand,
especially if the initial development was not disciplined and the product is
heavily being used, the error reports and the tedious repair efforts may force the
developer organization to an overhaul, as soon as possible.

On the other hand, the picture may not be that pessimistic, after all. Especially if
the personnel who were involved in the initial development are still available,

Chapter 3 / Traditional Software Development 76

maintenance is easier. Insight into the existing code is very valuable. Poorly
documented code is always difficult to maintain. Existence of documentation is
another asset that helps with maintainability of software.

Before starting the expensive maintenance project a feasibility analysis should be
conducted. Expected life of the product can be estimated. How much
maintenance will be required for every year is another estimation that needs to be
conducted. This forecast should take into account the increasing maintenance
costs for each year due to more problems expected to surface, especially in
software that has not been well engineered. Adding the yearly maintenance costs
for the expected remaining life of the software will yield the total expected
maintenance cost. This total-maintenance cost can be compared to the estimated
re-development cost, making it possible for a “reengineering” avenue to be
considered also.

3.6.1 Reengineering

Reengineering is the process of developing an existing software product again.
There may be several reasons to conduct this activity. Most of the time, it is
done to re-structure the codes and the design model behind them because it is
very difficult to understand or maintain the existing system. Reengineering
consists of two steps:
1. reverse engineering
2. forward engineering.

Moving in the opposite direction of the Waterfall tasks defines reverse
engineering. So, starting with machine code, we can move up to produce the
assembly language. This is the lowest-level reverse engineering. The target may
be a higher-level language source code, or a design model, or even the
requirements.

Reverse engineering is also a difficult task. CASE tools now offer aid in a
variety of levels of reverse engineering. Having a working program at hand is an
asset that can be taken as an operational requirements definition.

Once the requirements model is reached, forward engineering can start. After a
careful investigation of the requirements model for possible improvement,
development can proceed with the goal to provide documentation and models
that are complying with modern techniques and standards. Reverse engineering
studies the current implementation and forward engineering defines the “to be”
version.

3. 7 Summary
Initial approaches to structuring the software development process are
introduced. Starting with phased approaches, the industry adopted some standard
techniques for requirements analysis and design. Dataflow diagrams were
widely employed by systems analysts. Entity Relationship diagrams

Component Oriented Software Engineering 77

accompanied the dataflow model. For design, requirements models were
enhanced and development-related information was added. Also structure of the
software system had to be designed. Earlier work on modularity was guiding the
architectural specifications. Later, interface was introduced as an important
design component, both for user interactions and the inter-module interactions.
Data, structure, interface, and procedural design were conducted, supported with
graphical techniques and tools. Integration surfaced as a problematic phase
where uncovered errors would be discovered, directing the developers to revisit
the previous activities towards discovering the sources of the errors. Modules
were tested before integration and the partial system was tested after the
integration of each module. The testing and integration process either followed a
top-down or a bottom-up procedure. Various types of testing emerged as another
engineering field, for validating, verification and other quality-related quests. All
the phases of the waterfall lifecycle were supported with tools to produce fresh
code line-by-line. Huge systems were developed owing to the pioneering
engineering approaches for software development despite the frequent failure
reports. Finally, maintenance is presented as an expensive task that cannot be
avoided. There are different reasons for an existing product to undergo
modifications.

3. 8 Questions
1. Draw Dataflow diagrams for a flight reservation system. There are different

flights depending on the date, time, origination and destination locations.
Aircraft are assigned to flights. Lists of aircraft, locations, personnel, and
customers will be maintained. Booking and sales will be carried out by the
personnel.

2. Draw Entity-Relationship Diagrams for the problem in Question 1.
3. Construct a Requirements Directory for the problem in Question 1.
4. Starting with the Dataflow diagrams, try to construct a structure chart for the

problem in Question 1. You may enhance the DFDs as your design might
require.

5. Design the interface among the major modules of your design: specify what
kind of parameters should flow across the modules, their formats and
synchronization requirements.

6. Draw the screens for the user interface for the application described in
Question 1.

7. Draw a state diagram for the reservation operation: Your reservation
advances slowly: first flights are browsed and one flight is selected. Then
the seating plan is viewed and a seat is reserved. Finally this reservation is
bought. Meanwhile, after your selection of a flight, another person will
attempt to quickly reserve the same seat on the same flight and finish buying
before you finish reservation. Identify different states and give meaningful
names to them, also identify inputs to the state machine, and outputs.
Designate a reset state and at least one final state (could be the same as the
reset state).

Chapter 3 / Traditional Software Development 78

8. Explain why a complete software system is not tested at once after
integration, and rather modules get tested and stages of integration are tested
also.

9. Define the three elements of structured programming and explain how one
could violate those structures.

10. Describe the differences and similarities among testing, debugging, and
maintenance.

3. 9 References
[Chen 1977] P. Chen, The Entity-Relationship Approach to Logical Database Design,

QED Information Systems, 1977.

[Dennis 1973] J.B. Dennis, “Modularity” in Advanced Course On Software Engineering,
F.L. Bauer (ed.), Springer-Verlag, New York, 1973.

[Hatley and Pirbhai 1987] D.J. Hatley and I.A. Pirbhai, Strategies for Real-Time System
Specification, Dorset House, 1987

[McCabe 1976] T. McCabe, “A Software Complexity measure,” IEEE Transactions on
Software Engineering, Vol. 2, December 1976.

[Pressman 1997] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 4th
Edition, Mc-Graw Hill, 1997

[Simon 1969] H.A. Simon, Sciences of the Artificial, MIT Press, Cambridge,
Massachusetts, 1969.

[Ward and Mellor1985] P.T. Ward and S.J. Mellor, Structured Development for Real-
Time Systems, Yourdon Press, 1985.

[Yourdon 1989] E.N. Yourdon, Modern Structured Analysis, Prentice-Hall, 1989.

Component Oriented Software Engineering 79

Chapter 4
Chapter 4 Object Oriented Software Engineering

After a relatively long struggle to equip software engineers with better tools, first
software-conscious understanding shaped up as the industry converged on the
techniques that supported Object Oriented (OO) development. Change that
usually suffers resistance was now offering more than only a discipline to the
process. New concepts had to be mastered, even by the programmers. The OO
languages maturing by the late 80s were more difficult to learn than procedural
languages. Reluctant to new methodologies, the industry debated the maturity of
the OO technologies for serious projects. Today, any new project is developed
using OO unless the company is not yet caught up with the transformation from
the traditional inertia.

The idea gained popularity and it did not take long before the field began to
regard Object Orientation as a panacea to all problems. A more natural modeling
made it easier to keep the system under intellectual control. However,
difficulties with the new orientation were soon uncovered: Developers were
getting lost in “inheritance” depths. Nevertheless, the industry considers that
there is no better approach as yet, so it is advancing with what is available.
Contemporary technologies find a way of accommodation in OO representations.
Good practices from the traditional era have already been incorporated.

No matter how good a technique is, it should not be expected to be the silver
bullet for wicked software problems. The problem is much more complex than
that, and better efficiencies in its solution will not do away with the complexity.
Anyway, so many of the ideas maturing in the infancy of software were
formalized in Object Orientation. In the course of learning this new paradigm, a
more formal understanding of some classical principles is also gained: A
programmer, after being exposed to an OO language will produce better
organized program codes even using a procedural language.

Object Orientation frees the mind from the constraints imposed by the days of
early hardware. A lucky programmer who starts with OO languages will be
initiated to higher-level abstractions at the outset of learning. The entities in the
programming model represent their real-world counterparts closely. An object
includes data and function primitives packed together which points to the
fundamental OO principle: encapsulation. This very idea of grouping related
items together is a strong notion that helps in the organization of the code. Not
only object’s internals, any item is soon organized with its peers. A developer
now sorts the elements of the system with respect to their semantic proximity.
That is also related with the fundamental design rule that is cohesion.

Component Oriented Software Engineering 80

The encapsulation concept is closely related with the “controlled access”
principle. An object provides access functions for external entities if its data
needs manipulation by them. A good OO developer never uses global variables,
never allows direct access to the properties of an object, classifies properties and
operations in a hierarchy, has an understanding about protection levels of
properties (variables), and also about an object’s self awareness, in that high-
level operations can be dispatched without regarding the type of the object
(through polymorphism). Some of these concerns can be achieved in other
environments and OO background expertise provides consciousness to do so.

Objects, being structural units as well as logical elements are also a good
mechanism to manage coupling and cohesion. A set of objects can be defined to
represent a system and the set can inter-relate the objects. Some of the relations
are “structural”, in that they involve aggregation of objects into larger groupings
and inheritance of object definitions (classes) from a more general class in the
logical hierarchy of classes. An object should be a meaningful unit, therefore
properties and methods to include should naturally be cohesive. How much
coupling that is foreseen among a set of objects can change the way object
boundaries and compositions are determined.

4. 1 Object Orientation
There are three fundamental properties for a modeling tool or a language to be
Object Oriented (OO). These are:
• encapsulation,
• inheritance, and
• polymorphism.

Encapsulation suggests that an object represents its data primitives along with its
functional primitives. This means variables and functions are declared together
inside an object. In more general OO terminology these are properties (also
called attributes) and methods. In the real world, the actions that can be done by
or with an object are as important as its characteristics - also referred to as
attributes or properties - such as color and weight. For example, a coffee cup has
a diameter, color, weight, shape, and material as its properties but, more
importantly, it can be filled, emptied, sipped and broken. A cup is for drinking
rather than for observing how it looks. Such functions packed together with its
static parameters define the cup. Figure 4.1 represents this encapsulation on the
coffee cup example. Also encapsulation will be utilized to aid in information
hiding: Only the important aspects for observation from outside will be
represented as properties and methods.

Chapter 4 / Object Oriented Software Engineering 81

cup

weight

height

fill

drink

properties

methods

name

Figure 4.1 Encapsulation for a coffee cup.

Actually such declarations for the properties and methods take place in a class.
A class is like the type definition and an object is like a variable of that type. An
object should have a unique identifier. A class can be instantiated to generate
several objects of that type (class).

The members in a class - properties or methods - also come with their protection
definitions. The three protection levels (public, protected, private) are widely
considered standard and most environments support their representation and
implementation. Public members are open for access to outside: in a
programming environment, calls from anywhere in a program can be made to the
public methods of a class instance. Private and Protected members are accessible
by the objects of only this class, and that of the classes inheriting from this one,
respectively. Inheritance concept will be explained later. A developer should
make it a habit to protect properties and declare the methods public as the default
configuration. Exceptions to this prescription can be incorporated later, as the
need arises.

Observing a class definition, it is possible to understand what an object stands for
and what it can do. The question of how the methods work is not visible at this
point. That is how it is desired any way; information hiding principle suggests
that only the required amount of detail should be presented at any point. The set
of public members can be referred to as the “interface” for the class. That is the
part accessible from outside and that is what is necessary to use this class. The
interface concept is another important tool for the organization of complex
software. Especially with the emergence of the component technologies, the
concept is explicitly utilized to separate the definition of a unit from its
implementation.

Component Oriented Software Engineering 82

4.1.1 Object Based Environment

The popularity imposed stress on toolmakers to come up with OO products, even
if they are OO versions of their existing products. Soon there were so many tools
claiming to be OO. In fact, some of them were only Object-Based. Early
versions of some BASIC and Ada compilers can be regarded as Object-Based
although for some time they were presented as Object Oriented. The difference
is that such tools did not incorporate more advanced capabilities other than
“encapsulation.” If they had inheritance and polymorphism, they would be
qualified as OO. Polymorphism requires that inheritance is available. Both
concepts are more difficult to provide when compared to encapsulation.

4.1.2 Interaction

Objects interact as a requirement for their interconnection to serve as the building
blocks of a system. A system is a connected set of elements to solve a common
goal. Such units could be traditional software development modules, or modern
components in which case they are built for multipurpose usage – not for a
specific system. Reusable components are for easy composition into different
systems. In any case there are blocks that communicate. The communication is
through “messages.” The messages can be as simple as traditional function calls
(OO functions are methods declared inside classes) in a single processor
environment, or they could be strings of data transferred over communications
media among remote nodes of processors. An object can represent a reusable
component or a traditional module.

An OO model is a distributed one. There are stand-alone objects that exchange
messages. The most popular implementation of the message mechanism is the
method call facility. For any message, the calling and the called objects can be
observed as a client and a server. The initiator of the message is requesting a
service from the receiver. The “server” object that also provides methods for the
service should maintain required data as its property. The message by
convention should have the same name as the method. For an understandable
model, meaningful names should be given to the methods that also comply with
the direction of the call.

A distributed model is more complex than a lumped one. That is the main
theoretical difference between the traditional software models and the OO
models. The traditional or the structured approaches possess a single state space
for the whole system. Whereas, an OO model is a composition of individual
state machines that communicate. As a principle, less powerful models cannot
represent all the problems that a more powerful model accommodates. For this
reason, it is not advisable to start a modeling task with OO approaches and later
transport the model to a traditional environment. The distributed nature will not
be easily represented in a traditional model. Even if the problem is physically
not distributed, its OO model may be utilizing the distributed mechanisms with
its more expressive power.

Chapter 4 / Object Oriented Software Engineering 83

4.1.3 Classification

Inheritance is meaningful in a classification network. Objects can be analyzed to
find generalizations among them and the common factors for a set of objects
define the class. Classes further can be generalized to super classes. Likewise,
any class can have specializations and may lead to the derivation of many sub
classes. The factors utilized in the generalization/specialization considerations
are the properties and the methods. Its sub classes also own all such members of
a class. Sometimes the super class is called the base class and the sub class is
called the derived class. Figure 4.2 displays a simple classification scheme
where the specific vehicles are a specialization of the general “vehicle” class.
The figures in this text follow UML [Booch et al. 1999] graphical syntax where
classes are rectangles with three compartments for class name, properties, and
methods.

vehicle

air vehicle land vehicle naval vehicle

fixed wing helicopter

Figure 4.2 A Classification example

Classification is by nature a complex task. For years, the topic had involved
librarians in an effort to represent the material in an easier to locate indexing
mechanism. A single item could take place in different categories based on the
classification parameters. If all the concepts could be perfectly classified in a
single-root tree structure, where any item is a special kind of only a single
general item then the problem would have been much easier. In that case, there
would only be one parameter to determine the classification at any node.

Classification goes hand-in-hand with the inheritance concept. A sub class by
definition inherits all the members of a super class.

Component Oriented Software Engineering 84

4.1.4 Inheritance

When a class is defined in terms of specialization of a base class, the derived
class automatically owns any properties and methods of the base class. To use
these members it is not necessary to explicitly state that a member is obtained
through inheritance. If for example there is the “cup” class and the “coffee cup”
class is derived from it, the weight property and the drink method declared in the
cup is automatically present in any coffee cup. The coffee cup may additionally
have a handle that needs to be declared in its class definition. Figure 4.3 displays
the inheritance of x and y coordinates for a graphical application where the base
class is a “graphical object” declaring those properties.

There are many complications related to inheritance. The same member can be
re-defined in a sub class just like it was declared in a super class. In this case the
newly declared member “overrides” the inherited counterpart. This is more
meaningful if the members are methods. For example the draw method declared
in the graphical object class can be overridden by another method with the same
name, declared in the circle class. In implementation, the two different draw
methods can have different codes defining different actions when a draw method
is called. If a circle object invokes the draw method, it is the latter one that is
selected to run. The general rule is to search bottom-up for the same method
(function name plus the parameters list define a method). Once found, the search
is terminated and the first method found is the one activated.

graphical object

rectangle circle
radius

polygon
n-vertices

X
Y
Draw()

Figure 4.3 Inheritance

There are related concepts for the selection of the function to call once its name
is used. The more primitive one is “overloading”, which means the name of the
function is overloaded with different meanings. The parameters list, however,
helps in the identification of the exact function, although the name could be the
same for more than one function. Both overloading and overriding are resolved
at compile time. In other words, before run-time, the compiler knows which

Chapter 4 / Object Oriented Software Engineering 85

function is meant and determines the link between caller and the specific
function. The more interesting concept is polymorphic function calls that will be
explained further later.

Actually, if a member overrides a previously defined property or method, the
derived object contains all of the defined members. If no differentiation is given
during the access, the bottom-up search determines the member as the first found
one. As an example, the fixed wing, air vehicle, and vehicle classes could all
declare a “wheel” as an attribute. Now it is optional to pick any one of those
wheels. For a fixed wing object, the default is the wheel declared in “fixed
wing” class. If the wheel declared in “vehicle” class is desired, it can be
specified as “vehicle.wheel” in most of the programming and modeling
languages.

4.1.5 Multiple inheritance

Not all OO environments are equipped with this capability. Some languages
include “multiple inheritance”, such as C++ and Smalltalk, but some others do
not, such as Java and some popular windows based Pascal versions. It is
therefore important to know in advance, if there is going to be a language
restriction for implementation. Unlike the traditional approaches, in OO
development, initial modeling activities starting with requirements specification
are closely bound to the implementation capabilities. Since similar models are
refined at differing layers of detail – from requirements to coding - OO
development suggests such a restriction. If the required language does not
support multiple inheritance, the modeling should omit multiple inheritance at
any stage.

A class could belong to one super class as well as another one. In this case, the
properties and methods of both the super classes are inherited. Figure 4.4
presents a multiple inheritance example. If possible, this mechanism should be
avoided. It may not be a good idea for an object to have more than one class
simultaneously, anyway. But the question is, is there a theoretical need for such
a classification technique? Are there cases where multiple inheritance is the only
correct solution? There does not seem to be a binary answer to this question.
There are some cases where multiple inheritance is a better modeling option.
Then comes the feasibility of incorporating this mechanism in the development
of a current project. Some issues with additional complexity are introduced. The
repetitive declaration of members in super classes is a problem repeated here
with a different flavor: if two base classes declare the same member, which one
is picked when an object of the derived class tries to access? The answer is
undetermined. Explicit specification of the class-member pair is the safe access
to such repeated members.

Component Oriented Software Engineering 86

4.1.6 Interfaces

This term corresponds to a powerful concept especially utilized after the
component technologies. In general, an interface is the publicly visible
specification of the services and accessible parts of a module. Their structures
are strictly defined in the component protocols. Other tools have used the
concept also. The “h” files created with c programs actually are the interface
definition of the corresponding “c” file. Likewise, some Pascal compilers require
the “interface” and the “implementation” segments to be specified for any source
code. The same policy had been an actual part of the Ada language.

Actually it is a good principle to develop interfaces whenever a system seems to
be composed of layers or different subsystems. Such pieces should not come
together with free connections but rather all the interactions should be localized
to “interface” modules. This technique breaks the dependency of a module to
others. If a module is changed the dependent modules do not have to be changed
except for a local unit that is the “interface” section.

Following this convention, the public members of a class can be referred to as its
interface. For a group of classes that are organized as a package to represent a
part of the system, a class can be defined specifically to serve as the interface of
this package. This special class can contain methods for external requests and
their primary duty may be to dispatch the request to the actual service provider in
one of the classes inside the package.

For this reason, Java includes a special kind of a “class” that is referred to as
“interface.” The Java approach limits this new kind of class and its inheritance to
methods only. In other words, no properties (variables) can be inherited from an
“interface.” Although component technologies allow the declaration of
properties in their interfaces, the principle of controlled access does not promote
public variables. Java’s excluding variables from the interface thus makes sense.
This language allows inheriting from only one class but does not limit
“implementing” many interfaces.

Figure 4.5 represents the problem with repetitive member declaration in the base
classes taking part in multiple inheritance. Actually the different members are
both available and one has to be specifically identified at access time. The
amphibious class in Figure 4.5 has two A properties, one inherited from the land
vehicle, and the other inherited form the naval vehicle classes.

There are cases where the different levels of classification are required and it is
not easy to determine any priority among the classification parameters. In other
words, the parameter to base a classification can be employed before (at a higher-
level) or after another specific parameter. Figure 4.6 depicts this situation with a
classification of animals employing the parameters of “feeding” and “leg count.”
In Figure 4.6a, first feeding parameter is applied followed by the leg count. In
Figure 4.6b, the parameters are applied with different order.

Chapter 4 / Object Oriented Software Engineering 87

vehicle

air vehiclecarpet

flying carpet

Figure 4.4 Multiple inheritance for the flying carpet class

land vehicle

amphibious

A

naval vehicle

A

A {naval}
A {land}

Figure 4.5 Repetitive naming problem in multiple inheritance

Depending on the domain the classification parameters may have priorities;
abstraction levels also apply here. Then it is easy to employ the classification
sequence. With our limited knowledge in zoology, the classifications in Figure
4.6 imply that the two parameters are of equal priority. This can be concluded

Component Oriented Software Engineering 88

since the two alternative classification orders in Figures 6a and 6b do not present
any difference. In such cases incorporating multiple inheritance may be
justifiable. Figure 4.7 presents the multiple inheritance adaptation of the
example in Figure 4.6. In this case, a derived class picks among the base classes,
one class at a time for each classification parameter. The example illustrates the
picking of herbivorous eating pattern, four-legged leg count parameter and fur
class for the skin type.

animal

carnivorous herbivorous

Two legs Four legs Two legs Four legs

animal

Four legs

carnivorous herbivorous

Two legs

carnivorous herbivorous

a. feeding pattern first:

b. leg count first:

Figure 4.6 Different orders for classification parameters

4.1.7 Polymorphism

This property is the automatic selection of the correct method at run time. If the
same name is used for methods defined in different classes, without checking the
type of an object its method can be activated. This capability is valid for a
related set of classes – that inherit from the same base class. The virtual method
declared at the base class will be replaced by a real method once activated for a
specific object. This is best explained through programming examples. A
collection of classes should be inheriting from a base class where the method is
declared. Also, the same method needs to be defined differently in each of the
derived classes. An object of the base-class type will be assigned one object at a

Chapter 4 / Object Oriented Software Engineering 89

time, among a set of objects corresponding to the derived classes (an object of
the base class is capable of being assigned to any of its derived classes). After
each assignment the object of the base class will activate the method. Each
activation through the same method name will locate the correct method
depending on the object type that was last assigned.

animal

rabbit

four legsherbivorouscarnivorous feather fur scale two legs

Figure 4.7 Applying different classifications at the same level

The trick works in the run-time environment by changing the type of the main
object to the last assigned objects type, once assigned. Then, the object knows
who he is and hence will call his own method. So the object of the base class has
the ability to contain any descendent classes and will behave (change to) as any
such object assigned to it. Figure 4.8 depicts a polymorphic “run” method
example where a list of items is instructed to run, without checking what kind of
items they really are. This provides insight on the organization of an OO
program: To build up the definitions such as inheritances and polymorphic
methods one needs extra effort in the beginning. Once that structure is in place,
powerful operations can be achieved with concise code that is easy to understand.

There are some related concepts that need to be explained along with
polymorphism. Virtual methods are those defined in such base classes only with
the purpose of replacement at run-time. These methods do not need a definition
(body). Some languages also allow a definition and activation of such
replaceable methods. A class that will never be instantiated as an object but is
defined only for other classes to inherit is called a virtual class.

Component Oriented Software Engineering 90

RUN!

?

Robot run!
Bird run!Horse run!

Figure 4.8 Polymorphic calls

4.1.8 Composition

Inheritance is a very powerful mechanism OO systems offer. Besides
polymorphism, the reuse in the structural definition is also achieved through this
capability. The other mechanism to build more detailed modules out of existing
ones is composition. This is physically including classes inside a class. Rather
than simple properties, other classes participate in the container class as being
internal parts of it. If a windows based graphical programming model is
analyzed, so many levels of inheritance will be witnessed. However, huge
information systems defining the bulk of the software industry do not utilize
inheritance much.

While inheritance assumes the ownership of a duplicated set of all contents of the
base class, composition implies a part-whole relation among classes. The
container class contains other classes as if they were its properties. Since the two
mechanisms have different semantics, they need to be used correctly in models.
Figure 4.9 presents a class diagram that includes composition as well as
inheritance relations. The hollow triangle as an arrowhead stands for inheritance
and a diamond represents composition. The example in Figure 4.9 represents
inheritance from the vehicle class by the air, land, and the naval classes whereas
the land class composes (has) the wheels and the body classes. Actually, any
kind of connection in a class diagram defines a “relation” between classes. The
relations should have self-descriptive names. Inheritance and composition are
part of OO modeling formalisms, as pre-defined relations.

Inheritance stands for the “is-a” relation whereas composition is for the “has-a”
relation. In cases where a developer is not sure which relation to use, the
meanings of the is-a and has-a can be questioned for the application and the
appropriate one can be selected.

Besides the low-level composition among classes, the architecture of a complex
system can be defined as compositions of bigger-granularity modules. Best
modeled by sub-systems in UML, such big chunks can be incorporated in the

Chapter 4 / Object Oriented Software Engineering 91

model by drawing one inside the other to represent the part-whole relations.
Actually the first step in OO design is usually a system/subsystem architecture
definition. If this high-level composition relation is going to remain at the
architecture level, such graphical representation is sufficient. However, a
component-oriented approach where the entire system is represented in terms of
levels of composition among the components of varying granularities and
abstractions (more logical/more physical/ actual components…) requires a better
representation of the composition hierarchy. Such needs will be addressed in
component orientation related chapters. UML’s high-level composition
mechanisms are presented in Figure 4.10 as a “component diagram” where
subsystems model large-grained chunks.

Finally, a loose version of composition, namely aggregation, must be mentioned.
Not every OO modeling method includes two kinds of composition relation,
whereas UML does. The graphical representation is a hollow diamond for
aggregation, and a filled diamond for composition. If the contained objects will
not survive in case the container object is deleted then a composition relation
must be used. If the contained objects can still survive then aggregation is the
better choice. For example if professors in a department will still exist as part of
a university system after the department is closed, there is an aggregation relation
between the department and the professors. If the rooms of a building have to be
demolished with the building, composition is the relation between the building
and its rooms.

vehicle

air land naval

wheels body

Figure 4.9 Composition and inheritance relations in a class diagram

Component Oriented Software Engineering 92

«subsystem»

Transportation System

«subsystem»
Ground trans.

«subsystem»
Air trans.

«subsystem»
accounting

«subsystem»
accounting

«subsystem»
inventory

«subsystem»
carriers

«subsystem»
vehicles

«subsystem»
inventory

Figure 4.10 Subsystems in UML

4.1.8.1 Composition versus inheritance

 Modern OO oriented software engineering is intimately related with component
based development. Components are by nature composition oriented rather than
inheritance: They are built for composition. The development of a component,
however, can exploit any technique OO tools offer, including inheritance. From
an OO point of view, inheritance is more a logical description of similarities to
guide the development of a unit. Composition on the other hand does not regard
the development of smaller unit internals; it is used in the integration of readily
available executable pieces of code for the creation of complex systems.

From a programmer’s perspective, if the meaning of a model is ignored, using
inheritance in any case may be desirable. This way, shorter codes can be written.
Of course, both the models and the code should comply with correct relations
among modules. Two programming examples are presented below to display
the usage differences for the two mechanisms. Inheritance allows access to the
obtained attributes as if they were local. Composition requires the mentioning of
the class names before their internals are accessed.

// inheritance example:
//----- class declarations typically in a “h” file for C++ programs -----
class wheel {
 screw s1,s2,s3,s4;
};
class car :: wheel { // wrong inheritance! Car is a wheel ???
 ………
}

Chapter 4 / Object Oriented Software Engineering 93

//---- a segment in the implementation part (in “.c” file) -------
car car1;
car1.s1 = ……. // s1 is part of car1

// composition example:
class wheel {
 screw s1,s2,s3,s4;
};
class car { // no inheritance
 wheel W1;
};
//---- a segment in the implementation part (in “.c” file) -------
car car1;
car1.w1.s1 = ……. // wheel “w1” has to be mentioned.

4. 2 Object Oriented Methodologies
Many OO methodologies have been developed. Some widely known
methodologies can be accessed through these references: [Booch 1994, Booch et
al. 1999, Coad and Yourdon 1991, Coleman et al. 1994, Jacobson 1992,
Rambaugh et al. 1991]. The consistency in representation from requirements
through coding provided a similarity among the methodologies. So many levels
of details need to be addressed and it is impossible for any two approaches to be
identical in all of the activities. Nevertheless, it is easier than traditional
methodologies to arrive at general commonalities. As a consequence, there have
been two successful attempts to unite different approaches into a standard
methodology. Fusion Method [Coleman et al. 1994] selected better practices and
combined them with additional notations and gained popularity quickly. Later
Unified Modeling Language (UML) was introduced as a result of a similar effort
by three names that were already known for their widely accepted
methodologies.

An important difference can be mentioned among the methodologies based on
the classification/specialization choice in the determination of the object and
class hierarchies. While the bottom-up approach is favored more through starting
with the objects and continuing with their classification, there are some that
suggest to start with general abstract classes and arrive at specific objects after a
chain of specialization refinement. If the development starts with a written
description of what the system is expected to do, it may be feasible to select the
bottom-up approach because specific candidate objects will be located in the text.

4.2.1 General approach

Either Class Responsibility Collaboration (CRC) modes or use-case diagrams are
used to support requirements analysis for the majority of the approaches. Every
class assumes responsibilities relating to some of the system functions in CRC,
collaborating with others to accomplish those responsibilities. Figure 4.11

Component Oriented Software Engineering 94

depicts a CRC example. In use- case diagrams, system functions are presented
and their interactions, including those with actors, are defined. Then at the time
for drawing the class diagrams, objects and classes are determined.

Potential objects from a problem specification are [Pressman 1997]:
• External Entities,
• Things,
• Events,
• Roles,
• Organizational units,
• Places, and
• Structures.

Coad and Yourdon [1991] suggests the six criteria listed below, for the inclusion
of an object in the model:
• An object must retain information,
• Must include services that could change the values of its attributes,
• Should have multiple attributes during analysis,
• All occurrences of an object should have the same set of attributes,
• All occurrences of an object should have the same set of methods, and
• External entities essential to the operation of the system should be objects.

Classes are refined with the definition of their properties and methods. Relations
among the classes are introduced and class hierarchies are formed. Next comes
the modeling of the interaction among objects. The models set forth so far will
be refined through verification by scenarios.

Design activities follow with further details on the class diagrams and interaction
models. Another aspect that was not addressed in requirements is the structure of
the system. Starting as the initial design activity, system decomposition into
subsystems is a structure related task. Also packaging related classes/objects into
components or subsystems is part of structure design.

Since OO approaches are the de facto standard, any supporting technique is
imported into OO methodologies. Some examples to those techniques that are
not necessarily OO are the state charts, sequence diagrams, and use-case
diagrams. Some of these techniques were in use before Object Orientation was
invented. Figure 4.12 displays the primitives used in the use-case diagrams as
actors, use-cases, and dependency relations. Also an example use-case diagram
is presented in Figure 4.13.

Chapter 4 / Object Oriented Software Engineering 95

Collaborating classes Responsibilities

Class Characteristics (tangible, atomic …) :
Class Type (tool, property, role, event …) :

Class name :

Figure 4.11 A Class Responsibility Collaboration model

Use Case
X

Use Case
Y

Actor A

Actor D

Actor B Actor C

Use Case
Z

Use Case
T

«extend»

«include»

generalization

association

Figure 4.12 Use Case diagram primitives

Component Oriented Software Engineering 96

secure
function

bank
customer

user
validation «include»

withdraw

«include»

wire
transfer finger print

validation

«extend»

deposit central
database

«include»

account no.
determination

Figure 4.13 An example Use Case diagram

4. 3 Requirements analysis and specification
Two models have already been introduced that are CRC and use-case diagrams
with the latter being part of UML. No specific methodology is followed in this
chapter. UML is selected for graphical representations. Techniques will be
presented in an order that could stand for a coarse methodology employed by
experienced engineers.

4.3.1 Use case analysis

Use case diagrams are suggested to be simple enough to present the system
definition to the customer. Like other diagrams, these have the capability to be
used in advancing details to the procedural levels but that is not desired. Unlike
the dataflow diagrams of the traditional era, only one level of diagrams rather
than a hierarchical system of diagrams is desired. If an analogy to dataflow
diagrams helps, a level 0 dataflow diagram is perhaps the best counterpart. Use
case diagrams incorporate actors that interact with the system components. Here,
the components are highest-level functionalities that will be referred to as
“system capabilities” and, associated immediately under those capabilities, the
sub components are referred to as “system functions.” Dataflow diagrams only
displayed the interaction among the external entities and the system. Use case
diagrams replace the external entities with actors and also allow for the
interactions to be drawn for different system functions rather than only the

Chapter 4 / Object Oriented Software Engineering 97

complete system. Some code needs to be developed, corresponding to the actors
in this model. Whereas, the external entities in the dataflow models are strictly
external; they are not part of the system to be built. The actors will be
represented as classes in class diagrams. Such classes can be thought of as the
interface related to that particular actor.

A separate use case diagram is suggested to be drawn per system capability. The
use cases in the diagram (ovals) correspond to system functions under the
capability. Details related to the use case need to be explained. Denoting the
expected process in terms of ordered events accomplishes this task. A scenario is
thus described textually and then formally in terms of “interaction diagrams.”

There are two kinds of interaction diagrams in UML: collaboration and sequence
diagrams. There are objects and messages in these diagrams, corresponding to
the run- time interaction among objects. Dynamic modeling is thus achieved.
Messages are ordered in time by numbering them in collaboration diagrams or by
utilizing the vertical axis in sequence diagrams for the time dimension.

An OO model consists of different diagrams. Care must be taken to preserve
consistency. The analysis task is basically supported by three diagrams: use case,
interaction, and class diagrams. The messages used in the interaction diagrams
must be declared in the class diagrams as methods in classes. A method is
declared in the class that plays the receiver role for the message.

For problems that require complex temporal management, the state machine
concept can also be incorporated. For this purpose, a class can own a state chart
that is another one of the UML’s diagrams. Activity diagrams also contain
similar information, organized with respect to “activities” that take place while
the object is in one state.

4.3.2 Class diagrams

Classes and relations take place in class diagrams. The main structural unit of an
OO model, a class, presents its properties and methods. Also, a variety of
relations take place in a class diagram. The structural relations are inheritance
and composition. Also other relations like those of Entity Relationship Diagrams
are included and referred to as associations in UML.

Class diagrams are like the global variables for a program. All the classes do not
have to take place in a class diagram. There may be more than one class
diagrams for a system. Different relations could be used in different diagrams
and classes could be repeated across diagrams. Figure 4.14 depicts a class
diagram that only includes associations just like those in the Entity Relationship
Diagrams (ERD). Note that pluralities are more specific than those in the ERD:
any range can be specified. Sometimes a class diagram is called an inheritance
diagram or a relation diagram based on what associations it includes. Usually
many kinds of relations take place at once. Other class diagram examples can be

Component Oriented Software Engineering 98

found in Figures 2 through 7. Figure 4.9 is another class diagram that also
includes a composition relation.

There may be complex relations that require further specification than merely the
name, direction, roles on both ends of the relation, and pluralities. In such cases,
the relation is modeled by an “association class.” The principal classes taking
part in the relation are connected by an association link that is further connected
by a dotted line to the special association class.

room

number

course
code

exam

date

faculty

professor

Amphi

student

ID

grade
Letter
Stdnt.ID

1

1..*

1..* 0..*

teaches takes

1..*1..*

1..*

1..*

1..* 1..*

1..*

1..3

5..503..8

Figure 4.14 Class diagram with associations

Figure 4.15 displays a class diagram with inheritance and association relations.
Also a reflexive relation is shown where the same class is associated with itself
through the “calls” relation. Also this reflexive relation indicates roles on both
ends of the arrow. The relations can have direction, name, pluralities and roles -
all optional. Of course the sole reason for constructing a model is to understand
the system so it is very important to include all possible information along with
the relations. The examples in Figure 4.15 also present two alternatives in
determining the classes for similar objects; a telephone user class could assume
the different roles of “caller” and “callee” or, alternatively, those roles could be
assigned to separate classes.

Chapter 4 / Object Oriented Software Engineering 99

caller callee

Phone user

calls

Phone user
caller

callee calls

a. different classes for roles b. same class for both roles

Figure 4.15 Further relations in class diagrams

4.3.3 Interaction diagrams

Interaction diagrams contain objects modeling dynamic behavior. Classes are
logical definitions but objects exist in run-time and dynamic modeling
corresponds to the run-time. Briefly introduced in the use case analysis section,
the collaboration and sequence diagrams contain similar information. Some
environments can automatically translate a collaboration diagram to a sequence
diagram with only a single press of a button.

Figure 4.16 depicts a collaboration diagram that corresponds to the problem with
class diagrams presented in Figure 4.15. This collaboration diagram assumes
different classes for different roles. It should be noted that the first message
(Pick-up) is initiated by the caller, although the name-caller suggests that it is a
human user and should do the “picking-up” task. However, it is the phone device
that should react to the pick-up and any action taken afterwards is the
responsibility of the phone. Therefore, the services related with the pick up
operation should reside inside the phone and that is the class where the “pick-up”
method belongs to. The naming and direction for the other methods also follow
the same rule. The last message “7: hello” is actually not a message the software
system is responsible for. It is merely placed in the diagram to complete the
session concerning connection for telephone dialing for understandability.

A sequence diagram version of the interactions in Figure 4.16 is provided in
Figure 4.17. Objects are listed at the top of the diagram and dotted lines are
drawn down from the objects. Message links connect the dotted lines
corresponding to objects and message numbers are omitted.

It is possible to group related messages that account for a sub-scenario and
number them using a decimal point such as (2.1, 2.2, 2.3 …). Also, control
information can be demarcated by adding letters to the numbering to mean that

Component Oriented Software Engineering 100

those messages belong to the same block. Thickening the dotted lines into
hollow rectangles in sequence diagrams can represent blocks. For example, a
message can start an “if” block in the caller objects’ dotted line that ends after the
responses are received for both the “if” and its “else” sequences. Conditional
message activations can be modeled by preceding a message with a “guard”
statement enclosed in angled brackets. Once again, the idea is understandability.
Low-level programming complexities are not desired with so many control
structures in the interaction diagrams.

:caller

:phone

:callee

1: Pick-up

 2: Hear-dial-tone
5: Get-ring-indicator

3: Dial(phone-no)

4: Ring

6: Pick-up

7: Hello

Figure 4.16 Collaboration diagram for a telephone connection scenario

4. 4 Design
Following up on the model developed during the requirements specification,
design-level details can be introduced. In some cases the requirements level
information may be revised. New classes and more members to existing classes
will be introduced. Also new messages in the interaction models will be added.
The detailed specification of the methods needs to be defined. This is the same
as the procedural specifications done in the traditional approaches. Messages
also may require synchronization specification. UML’s message representation
allows different kind of synchronization to be shown with different arrow shapes.

Chapter 4 / Object Oriented Software Engineering 101

:caller :phone :callee

Pick-up

Hear-dial-tone

Dial(phone-no)
Ring

Get-ring-indicator

Pick-up

Hello

Figure 4.17 Sequence diagram for the telephone connection

c1:caller c2:caller p2:phone p2:phone

Pick-up

Hear-dial-tone

Dial

Ring Get-ring-indicator

Pick-up

Hello

connect

Figure 4.18 Using same class for different roles.

Component Oriented Software Engineering 102

Besides procedural specifications, new techniques to be used in design are the
structural tools and distribution of the components to nodes. The structure-
related specification activities involve packaging different elements of the design
into modules that are called packages or subsystems in UML. Initially UML
only included packages that accounted for a logical grouping of other packages,
classes, objects, and relations. Later subsystems introduced as derivations of
packages are for physically partitioning the design components. Actually
“components,” packages, and subsystems reside in the “component diagrams” of
UML. Such modules have dependency relations among themselves implying a
“compile dependency” for the future implementation.

The modules should be defined with interfaces. Component units have their
interface elements by default. If the environment does not provide specific
interface facilities, the functionality can be provided by classes that publish
public methods for external access, at any module they are meant for.

General modularity principles of coupling and cohesion should be considered in
determining the scope of any structural unit such as a class, a subsystem, or a
component.

4.4.1 Design stages

Depending on the methodology, various activities can be performed with
different orders. The general approach suggested in this text starts with a top-
level decomposition of the requirements model into candidate subsystems of the
design model. Then comes the design of classes and objects. Finally message
designs follow. Once a satisfactory level of a design model is achieved,
scenarios can be enacted to verify the design model.

It is highly probable that some of the implementation will be assumed by readily
available components. Most of the component technologies are OO development
compliant and they can be represented in the design. If it is possible to minimize
new code development, the design should start with this consideration. One
option is to follow a bottom-up integration path starting with the existing
components as the leaves of a tree structure. Super components (or containers)
can be formed by composing elementary components. This synthesis operation
will continue until the whole system is reached by the final composition. There
could be a one-level integration of all components into a system, or a hierarchical
composition is possible. The intermediate levels could be a logical-design
activity: some code writing is necessary but the intermediate components do not
have to be implemented as physical components. If, at any level, component
technology is to be followed, then the intermediate level modules also should be
coded as components, complying with the underlying architecture that would
suggest interface and connectivity conventions.

For a top-down decomposition, subsystems will be refined until they need to be
implemented in terms of objects. The objects or a collection of them in terms of
a subsystem could be substituted by component technologies. To maximize

Chapter 4 / Object Oriented Software Engineering 103

reuse, the top-down decomposition may have to be adjusted for accommodating
the existing components so that minimal new code ends up being developed. In
any case, OO media does not provide much support to guide the hierarchical
structures.

4. 5 Coding
The design model is converted to program codes to implement the system.
Although developers desire to finalize all the parameters at design stage, the
programmers have the final say. If the process does not employ hard measures
for design compliance verification, care must be taken to have consistency
between the design and the code. Anyway, OO makes it easier to link design to
implementation. This section will illustrate the C++ examples [Muller 1997] for
some of the basic models. CASE tools can create most of the “skeleton code”,
assuming common usage of classes or so, for example providing constructors and
destructors and assignment operators. Detailed implementation is left to the
programmers.

A class is presented with its UML representation and C++ code in Figure 4.19.
Default method declarations also take place. Figure 4.20 displays a similar case
with one property defined. The C++ codes reflect the relevant segment;
assignment methods are not included for brevity.

Class Course {
public:
 // constructors & destructors
 Course();
 ~Course();
 // assignment and equality operators
 const C& operator = (const C& right);
 int operator = = (const C& right) const;
 int operator != (const C& right) const;
 } ;

Course

Figure 4.19 The simplest class in UML and corresponding C++ codes

Component Oriented Software Engineering 104

 class Course {

public:
 ...
 void Op1();
 const String get_name() const;
 void set_name(const String value);
private:
 String name;
}
const String C:: get_name() const {
 return A1; //

Course
name: string

Op1()

Figure 4.20 The UML class with a property

The trivial class definitions might seem intuitive. For more advanced features it
is also not very difficult to devise coding mechanisms. However, it is better to
follow the experienced practices and conventions that tools adhere to. The next
feature is the associations in UML diagrams. Figure 4.21 depicts two classes
with a relation. This relation is reflected in the code as mutual pointers in the
participating classes.

Sometimes the association is more complex and a dedicated association class will
be used to describe it. Figure 4.22 represents such an example. In this case, the
original classes contain pointers to the association class that, in return, holds
pointers back to the original classes. Again, default declarations are not shown;
only the new items corresponding to the association class notion are included.

class A {
private:
 B* Rb;
public:
 const B* get_Rb() const;
 void set_Rb(B* const value);
}

class B {
private:
 A* Ra;
public:
 const A* get_Ra() const;
 void set_Ra(A* const value);
}

A B
Ra Rb

Figure 4.21 Association between two classes

Chapter 4 / Object Oriented Software Engineering 105

 class A {
private:
 C* the_C;
......
}

A B

C

class B {
private:
 C* the_C;
............
}

class C {
private:
 A* the_A;
 B* the_B;

}

Figure 4.22 Association class

A composition relation can be named in addition to the default meaning on the
diamond-end link. The other end of the line can have a role name that will be
used in naming the pointer from the container class to the contained class. A
reverse pointer is also provided in the contained class for access to the owner
class. The name of this reverse pointer is simply utilizing the name of the
container class. The looser version of composition that is the aggregation
relation is also translated into a pair of pointers in both classes. Figure 4.23
depicts the translation of the composition relation to C++.

class A {
private:
 B* theB;

}

class B {
private:
 A Ra;

}

A BR

Figure 4.23 Composition in C++

Finally, an inheritance example is presented in Figure 4.24. The multiple
inheritance from two classes is also capable of incorporating additional access

Component Oriented Software Engineering 106

security for the members. The class declaration comes with the inheritance
definition:

 class B : public A2, public A1

where B is inheriting from A2 and A1. The “public” keywords mean that the
protection levels should be preserved for the members that are inherited. A
different keyword such as “private” or “protected” would only bind extra access
limitations: any member with a looser access limitation has to be raised to the
security level of the keyword. This means that the members in the base class can
never be opened for easier access but they can be limited for stricter access
control, after inheritance by the derived class.

#include “A1.h”
#include “A2.h”
class B : public
A2,public A1
{

}

A1 A2

B

Figure 4.24 Inheritance in C++

It should also be noted that usually one class is dedicated a file (.h and .c files).
Sometimes closely connected classes take place in one file. In Java codes, since
there are no pointers, variables are used instead of pointers. The coding
examples can easily be interpreted for Java language with this principle in mind.

4. 6 Summary
Object orientation has been introduced as an appropriate move in the software
engineering discipline. The models correspond to real world entities more than
the traditional era models offered. The idea is moving towards component-based
development also.

UML has been observed as the prominent modeling language. A suggested
approach is followed for ordering the tasks in a lifecycle through OO techniques.
Use case diagrams are for capturing the customer’s requirements. They need to
be supported by the interaction diagrams for the detailed modeling of the
execution. Class diagrams also are required to provide the players in the
interaction game. Use case diagrams represent system capabilities where each
use case for a system function is explained by an interaction diagram. If
temporal management is necessary, state machine based modeling can also be

Chapter 4 / Object Oriented Software Engineering 107

used. Each class is capable of containing a state machine that is modeled through
a State Chart Diagram in UML.

Design for the objects start with refining the requirements model.
Implementation oriented details are further supplied to the class and interaction
diagrams. Structural organization of the OO elements is achieved by grouping in
chunks such as packages. Decomposition of the system is important to utilize the
readily available components. Message specifications follow, including
synchronization modes. Finally, objects and their relations are converted to
programming language statements to illustrate how the concepts are applied.
Most of the relations translate to mutual pointers in both of the participating
classes.

4. 7 Questions
1. Object Orientation is presented as a positive move in the software history.

Can you point out some weaknesses or drawbacks?
2. How is the Structure dimension supported in OO models (assuming the

elementary design dimensions as Data, Function, and Structure)?
3. Discuss the Object Orientedness of use case diagrams, sequence diagrams,

and state charts.
4. Compare the top-down and bottom-up approaches in determining class

hierarchies. State the advantages and disadvantages of both.
5. Describe and compare the notions: overloading, overriding, and

polymorphism.
6. Give a classification example where multiple inheritance is appropriate.
7. Draw a class diagram that includes an “association class”.
8. Assume a relational database will be used. How would you save the objects –

ignoring their methods – in the database? In other words, what features in
OO models can relate to database tables, relations, and fields?

9. If you were to develop code without an object oriented compiler, how would
you approximate the OO logic using a procedural language?

10. Define a problem of your own and develop the OO requirements model
utilizing use case, class, and interaction diagrams.

4. 8 References
[Booch 1994] G. Booch, Object-Oriented Analysis and Design, 2nd Edition, Benjamin

Cummins, 1994.

[Booch et al. 1999] Grady Booch, James Rambaugh, Ivar Jacobson, 1999, The Unified
Modeling Language User Guide, Addison-Wesley.

[Coad and Yourdon 1991] P. Coad and E. Yourdon, Object Oriented Analysis, 2nd
edition, Prentice-Hall, 1991.

[Coleman et al. 1994] D. Coleman et al., Object-Oriented Development: The Fusion
Method, Prentice-Hall, 1994.

Component Oriented Software Engineering 108

[Jacobson, 1992] I. Jacobson, Object-Oriented Software Engineering, Addison-Wesley,
1992.

[Muller 1997] P-A. Muller, Instant UML, Wrox Press, Birmingham, Canada, 1977.

[Pressman 1997] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 4th
Edition, McGraw Hill, 1997.

[Rambaugh et al. 1991] J. Rambaugh et al., Object-Oriented Modeling and Design,
Prentice Hall, 1991.

Component Oriented Software Engineering 109

Chapter 5
Chapter 5 Introduction to Domain Oriented System

Development

5. 1 Introduction
Since the beginning of the computational era, there has been a variety of
approaches in an effort to provide better engineering solutions to software
development. Maturing out of the early hardware-dependent and limited
conceptual foundations, software engineers have been productive in developing
methods during the definition of their new discipline. Discovered relatively late,
the most striking problem surfaced to be the huge complexity of the average
system demand in the market. Linear improvements in production tools –
conceptual or practical– would not do the trick: the discipline was requiring
improvement in orders of magnitude to satisfy its ever-growing quest for
development efficiency.

Such ambitious demand required intellectual control over the problem, which is
only possible after the digestion of higher-level abstractions by the developers.
The semantic gap was diminishing between the cognition of a problem in the
brain and its formulation for the machine, i.e. the computer, as a result of the new
ideas being applied to the field. Some examples to such novelties adding to our
leverage are Functional Programming, Object Orientation, and abstraction
mechanisms in design models. The struggle to solve the main problem at higher-
levels of abstraction [Tanik and Chan 1991] was proper and well accepted. It
was not sufficient though. Gigantic sizes of the systems had to be matched by
production speeds in an ever-hungry market.

One persuasion is clearing itself out of the fog of uncertainties – it is not feasible
to create tens of millions of lines of code, one line at a time. Luckily a wide
spectrum of functionalities had been coded somewhere by someone. A new
system should be built by locating and integration of such islands of code. It is
not a coincidence that an array of new technologies and ideas all relate to the
integration concept. Domain Analysis is one such idea, and so are component-
based technologies, design patterns [Gamma et al. 1995], Common Off the Shelf
Components (COTS), frameworks [Fayad 2000], and software architectures
[Gamma et al. 1995].

Chapter 7 / Traditional Development of a Travel Reservation System 110

A domain can be defined as a set of current and future applications that share
common attributes. Domain analysis is actually a set of activities for defining
domains. Existing applications and their development processes are studied to
identify and represent relevant information. Domain experts, underlying theory,
and developing technologies are also good resources for accumulating such
knowledge.

Domain orientation primarily lends itself to the understanding that the experience
and reusable structures in developing similar systems can systematically be
managed. With similar meaning in the same domain, experts accumulate
knowledge over a family of similar applications. To engineer this experience, a
methodology sets forth the mechanisms to capture and represent knowledge plus
a mechanism to introduce building blocks for the system builders, in a particular
domain. Further, utilization of the captured experience and the building blocks
(components [Szyperski 1998]) in an effort to instantiate them to form products
is the continuation of the methodology. As shown in Figure 5.1, the two separate
cycles, defining a domain and utilizing the domain, constitute the foundation of
Domain Oriented software development. Early research that prepared the
Domain Orientation can be found in a variety of work such as in [Arrango 1994,
Diaz 1987, Holibaugh 1993, Itoh et al. 1998, Kang et al. 1990, Neighbors 1989,
Simos 1996, SPC 1990].

expert

Software products

Domain
creation

components

knowledge

Product
development

developer

Domain

Figure 5.1 Domain Oriented Software Development

5.1.1 Domain Analysis in the developing Perspective

Besides the “build by integration” paradigm, the Domain Analysis (DA) activity
serves the cause to cope with complexity, utilizing another understanding:
separation of concerns by offering “separate domains.” Both concepts agree with
the most natural approach for complex tasks – divide and conquer. Introduction
of software components as the building blocks for integration should be followed
by a categorization of the components in related fields. Better stated, component

Component Oriented Software Engineering 111

categories (Domains) should first be defined, and then populated with
components. This has been the actual trend.

Early attempts to provide solutions across domains in a single development
environment have proven inefficient. An example is the pioneer structured
language, PL1. Soon after its introduction, tools to address different concerns
were being appended. Database query statements were now built into PL1.
Arriving later, Pascal, as a pure procedural language, enjoyed common
acceptance while PL1 suffered lack of interest. An early research work
addressing the need to manage different domains in an orchestrated separation is
Design Abstract Requirements Manipulation Shell (DARMS). Developed by
Christiansen [1989] during his PhD study, DARMS facilitated two categories of
developers as Domain definers and Domain users. The first category of
developers can also be referred to as Domain Experts or component developers.
They provide the environment for any specific domain by supplying a set of
software units. As a matter of fact, the domain-supplying developer category can
contain more than one set of experts, actually one set per domain. The latter
category comprises the build by integration practitioners. They locate and
integrate components into systems and make the system work. This task will
benefit from employing domain-experienced developers, but not to the extent the
domain definition task would.

Figure 5.2 displays the relation of the technologies with respect to the two
dimensions that are instrumental in analyzing the divide and conquer benefits.
The dimensions are the separation of domains and the granularity of the code.
The technologies are the monolithic systems that are built in discretion and
components that are developed with the intention of integration in different
systems.

The COTS concept was introduced earlier than the component technologies,
generally targeting large-grained modules. Grain size in component technologies
is an important attribute, and components do not have to be small-grained.
Figure 5.2 assumes the common understanding of the industry as of today.

In isolation, the Domain Analysis activity can be utilized for either component
based or monolithic development. As a natural player for the Domain Oriented
Software Development, Domain Analysis provides the basis for creating
components. As the mentioned DARMS research suggested, domain specific
development can better be achieved utilizing the component technologies.
Recent research indicates that the trend in the domain specific approaches is
towards supporting “component concepts”, even if not yet supporting the
“component technologies” as they are practiced today.

Chapter 7 / Traditional Development of a Travel Reservation System 112

COTS

Increasing Granularity

In
cr

ea
se

d
D

om
ai

n
Se

pa
ra

tio
n

All-purpose tools

Components

Monolithic
Systems

Figure 5.2 Domain and size based separation

5.1.2 Justification for Domain Specific Development

Reuse is no doubt a mechanism for efficiency. New technologies have also been
investigated within the reuse paradigm as a critical criterion. Object-Oriented
modeling promotes reuse mostly through the inheritance ability. Before any
infrastructure establishments such as object orientation or component
architectures, reuse was attained through constructing software libraries. This is
only to mention code reuse. Today, component technologies are regarded as the
utmost reusable modules. Components are produced for reuse, more than any
other concern.

Domain is the context for which a component gains its meaning. It is not
realistic to expect that a limited set of components should be suitable for solving
all kinds of problems. The other extreme is providing a limitless number of
components to address the whole software problem world, without domain
separation. There is no need to discuss the inappropriateness of this approach. A
given problem is almost always that of a domain. If a customer needs a system
to do everything (like PL1 attempted to code in every domain), different systems
for discrete domains can artificially be integrated – again suggesting that one
domain-specific system should be developed at a time, before integration.
Sounds like recursion? Yes, and no problem about it also. One person’s system
is another person’s component. There is no reservation about further organizing
a domain in component categories of different abstraction levels. So a domain
can further be divided into sub domains – vertically or horizontally. Figure 5.3
depicts the partition of a domain. Nevertheless, a domain is needed for
production, so lowest level (implementation) constructs have to be
accommodated.

Component Oriented Software Engineering 113

Different domains

A
bs

tra
ct

io
n

Domain

Sub
Domain

Figure 5.3 Partitioning a domain

Reuse can be enabled by constraining development within a domain. Efficiency
to locate a component depends on how well the experts know the component
library. Familiarity with the domain library is easier with a smaller library.
Natural limitations of the human mind that make it difficult to concentrate on too
many objects at once have resulted in the “divide and conquer” approach. In
mature domains, developers know the components by name, which immediately
signifies the meaning, the capabilities, and other specifications of a component.
A good example to matured domains is the digital circuits field. An experienced
designer knows how many “and gates” are in a specific chip, when told its name,
and further how the pins are laid out. Established standards are an indication of
the maturity of a component domain. Figure 5.4 depicts the layout of a
component in a digital circuit domain that is known as the Transistor-Transistor
Logic (TTL). Here, the components are chips that contain a variety of gates and
higher-order units that are laid out within some standard patterns. This example
is of a collection of four “NAND” gates. The numeric code that identifies this
chip is 7400 – this is the first component in the so called 74 series. This
nomenclature implies the electrical characteristic of the family of components,
corresponding to a standard. Also the connection pattern is another standard that
applies to many of the chips in the 74 series of TTL components: Most of the
“quadruple 4-input” gates have their input/output pins connected in the same
pattern as the example depicts in Figure 5.4.

Chapter 7 / Traditional Development of a Travel Reservation System 114

1 2 3 4 5 6 7

 +5V

ground

14 13 12 11 10 9 8

Figure 5.4 The quadruple 4-input NAND gate

Soon after its introduction, variations on some “quality factors” were available in
the form of faster (74S series) or low-power (74L series) versions. Some of the
chips allow a limited modification capability by allowing some mode setting pins
to be connected to ground for one mode, or to Vcc (5 Volts) for another.

Using the TTL families of digital circuit components, a designer is freed from
lower-level development for example to construct a gate. Also, the electrical and
speed characteristics are guaranteed within specified limits. As a result,
designing bigger systems is faster and more reliable. Some efficiency is lost,
however: If only one AND gate is needed, a chip that contains four has to be
bought and connected, with three gates wasted (unused). On the other hand this
“componentization” saved so much that, in general, such inefficiencies are not
even felt. Also, the technology became so inexpensive that the waste of a
handful of gates ca be disregarded.

The DARMS environment actually provided means for creating different domain
infrastructures on a single tool. By allowing different experts to create different
sets of objects and providing wiring-level automation, the tool would provide
integration for objects in any domain. Figure 5.5 depicts the multiple domain
ability of the DARMS tool. The tool’s capability to accommodate multiple
domains should not be taken as its deficiency in supporting specifics of different
domains. Such special capabilities are defined by the experts, while defining the
domain. Once different domains are defined, DARMS actually offers different
environments per domain rather than behaving like a single tool aiding all
concerns.

Component Oriented Software Engineering 115

DARMS

Domain X

Domain Y

Domain Z

Domain Definition

System
development
in a selected
domain

X Domain Experts

Y Domain Experts

Z Domain Experts

select
domain

Figure 5.5 DARMS as a multi-domain tool

Partitioning the problem space into domains results in limiting the number of
objects a developer has to study. It is easier for a developer to know a limited
library than to know every component on earth. Also the experience and know-
how about the usage of the components are very valuable, and time consuming
assets are more effective in a limited domain.

The pattern is not only applicable to humans; artificially intelligent machines also
are more efficient when the breadth of the required knowledge is limited in
scope. Automatic code generators have not replaced programmers and designers:
they cannot do everything. For more specific usage (in narrower domains),
however, they have been more successfully utilized. The visual code generating
environments (Visual Basic, Visual Café, Visual C++, JBuilder, Delphi,
JDeveloper, BDK, Power Builder, etc.) are indispensable tools for today’s
programmers. They are good in generating a Graphical User Interface (GUI)
and almost nothing else, automatically. A more domain-specific example is a
tool that would accept specifications graphically and produce code for a complete
application. The catch is, the application had to be of a medium-size business
automation type. MicroStep is the name of such a tool was introduced two
decades ago.

One explanation of the success in limited domains is the accumulation of default
information that is automatically installed without a need for specification. A
domain can be characterized by a set of similar applications. Once similarity is
inherent, some default detailing can be assumed. A knowledge base is produced
as a domain matures. Within this perspective, maturity relates to know-how for
“filling in the blanks” besides relating to familiarity with the component set.

Chapter 7 / Traditional Development of a Travel Reservation System 116

5.1.3 There is no free Reuse

Domains promote reuse and ease for software development if locating and
integration of pre-developed software components is convenient. To be able to
solve all kinds of problems optimally in the domain, the number of required
components is theoretically infinitive. This requirement contradicts our
condition for the usability of a domain. It is not easy to locate the desired one
among a large number of components. Also it is not possible to be familiar with
all the components if there are so many of them. The solution is to introduce
modification capability for the limited set of components.

With an analogy to language theory [Hopcroft and Ullman 1979], a domain is a
grammar and the products are language statements. A grammar is capable of
producing infinite number of statements just as there could be infinite number of
systems a domain environment could produce. A grammar uses a finite set for
input as an alphabet and a domain accommodates a finite set of components.
Rules to generate expressions in a grammar correspond to rules to integrate
components. Also, some rules should guide their modification. These
production rules can be interpreted as a methodology for a domain-oriented
component integration. Rules can also be treated by a tool as specification in
automatically guiding the development activity. To complete the analogy with a
regular grammar in the expression of a software development domain, automata
theory can be utilized. A finite state automaton can accept expressions generated
by a regular grammar. Actually, system under development is the acceptor of the
production. Equation 5.1 displays a five-tuple consisting of a set of states, an
input alphabet, a transition function, an initial state, and a set of final states to
represent Domain Oriented development. Table 5.1 provides the explanations for
the symbols in Equation 5.1, in terms of automata theory and its interpretation for
the software domain modeling.

 D = (S,Σ,δ,S0,F) 5.1

Table 5.1 Software development domain interpretation of Finite State Automata

Symbol Meaning Interpretation

S Set of states Set of development states

Σ Input alphabet Components

δ ansition function cification action for any refinement

S0 Initial state Request for a product

F

et of final states

final specification states: where an
able status of the product is achieved.

Component Oriented Software Engineering 117

 S = {S0, .. Si, .. Sn} 5.2

 Sj = δ(Si , aj) 5.3

where Si, Sj ∈S and aj ∈ Σ ; Σ = { ai, aj .. an }

The general constraints on reuse need to be traded off. For a component, the
smaller the size, the greater is the chance of reuse. But the amount of reuse is
low. For a large component, the amount of reuse is high, once the component is
utilized. But the chance to use a large component is low. A large component
will be conducting a lot of functionality, all of which exactly may not be easily
contained in a demand, unless some modification is done.

Developing the same functionality is about five times more expensive if it was
designed for reuse. Most of the additional cost of reuse is in the domain
definition. Components are developed for reuse and they are more complex than
simple functions. Some visual environments started with the non-component
versions of the GUI objects, which were later converted to components by adding
a ‘wrapper’ code around them. However, in an established domain-oriented
development medium, it is expected that the expensive preparation of the domain
will pay-off by repetitive productions. Generating systems will be less
expensive, in addition to other benefits when compared to non-domain-
orientation. Figure 5.6 depicts the contradicting dimensions of reuse potentials.

Amount of Reuse Functionality

Reuse probability

Increased
Component Size

Figure 5.6 The probability and amount of reuse

Chapter 7 / Traditional Development of a Travel Reservation System 118

As a final word, although it is possible to define a domain only at abstraction
levels, or even at lower levels but without component technologies, modern
domain technologies are equipped with the component concept. This is besides
the fact that the produced objects are not always required to comply with an
established component protocol.

5. 2 The Domain Oriented Process
There are few approaches to Domain Oriented Software Development. A
commonality that is observed across those approaches is the two kinds of basic
activities: Definition of the domain and development of domain specific
software. Both activities are further detailed to methodological levels. The
domain environment is shown in Figure 5.7 with the separate kinds of users.

Domain Components

Domain

Define
components

Select
components

Feedback

System

Integration

Expert Integrator

Figure 5.7 Domain usage

5.2.1 Definition of a Domain

The Definition of a domain is a complex activity. Similar to the development of
software, there are methodologies addressing various stages of activities
producing a domain model. This is like defining a family of software products,
rather than developing only one. Actually, an analysis is conducted for the
commonalities that can be found in the possible variety of applications for the
domain. This analysis results in sets of primitives to be used in constructing the
components and in the behavioral description of the domain aspects.

Domain analysis uses a set of existing or to-be-built applications and human
experts as sources of information. Commonalities are derived from the
applications and abstracted to form a basis for the domain structural elements.

Component Oriented Software Engineering 119

Also other important knowledge elements such as a terminology dictionary, a list
of features to parameterize the domain knowledge, and higher-level rules as
policies and patterns of usages are gathered from the human experts. At this
phase, the abstracted capabilities and system-level functions common to the
applications are also catalogued as entities. Relation patterns among those
entities are recorded.

A generalization can be made for the expectations from the Domain Analysis
activity. The goals of Domain Analysis can be stated as follows:
1. Produce reusable software objects
2. Produce reusable requirements
3. Define reusable software architecture
4. Design reusable code
5. Define reusable structures

Once all the precious information is extracted, next comes the problem of
representing them. Knowledge representation is a problem of its own with
peculiar difficulties. Here, the emphasis is in the ease for access and
applicability to new problems. Features and abstract structures will be
manipulated in the construction of new systems. Graphical models have proven
to be useful in representation. Actually, this step is for the modeling of the
domain after its analysis.

There is also some room for implementation. Besides the required implemented
pieces in the form of components, some architectural structures may be handy if
they are present. In a domain, there would be typical applications of recurring
patterns. The connectivity for a pattern composed of components, will be
provided by a coded facility to be replicated per system.

The knowledge gathered during domain analysis is used also for the integration
of components. Such knowledge is classified into various structures by different
methodologies. Some integration information is inherent in behavioral
descriptions such as ‘collaboration.’ Manipulated as interaction diagrams in
UML [Booch et al. 1999], collaboration among a party of components can be
explained in a scenario. A more precise modeling is an ordered set of messages
across the participating components. Since the messages form the connections
among the components, the collaboration concept is a blueprint for the
integration among the components participating in a scenario.

Some of the approaches to Domain Definition are:
• Feature Oriented Domain Analysis (FODA),
• Domain Analysis, Modeling and Engineering (D-AME), and
• Joint Task Force Object Oriented Domain Analysis (JODA).

FODA process for Domain Analysis consists of three steps:
1. Context Analysis,
2. Domain Modeling, and
3. Architecture Modeling.

Chapter 7 / Traditional Development of a Travel Reservation System 120

D-AME suggests processes that contribute to its abbreviated name:
1. Domain Analysis,
2. Domain Modeling,
3. Domain Engineering, and
4. Utilizing the domain for the phases of the software lifecycle.

SPC defines different activities:
1. Domain Description (conceptual taxonomy),
2. Domain Qualification (feasibility analysis),
3. Knowledge base (domain knowledge), and
4. Canonical requirements (Reusable requirements).

These approaches are mentioned to present an idea about the existence of domain
based engineering methodologies. Included activities can be explained in further
detail. Interested readers can be directed to the references for lengthy
descriptions of prescriptive development processes.

The original Domain Analysis techniques did not include provisions for
extending to Web services. The idea was to provide a self-contained framework
for “instantiating” applications. However, the philosophy is so close to the
contemporary development towards achieving similar goals using the Internet.
With an analogy to Feature Models, “ontologies” are used as a semantic
description of the modules that populate a domain. Equipped with such
definition tools, directory services such as UDDI help the designers to locate
components. Once found, such components – implemented as Web services –
can be accessed through messages that must comply with related standards. It is
possible to extend the philosophy of FODA to the Internet for locating and
integrating modules for generating applications. Figure 5.8 depicts the Internet
enabled version of locating and integrating components.

Although the Web services related work seems disconnected with the domain
analysis approaches, there are commonalities. Both approaches try to aid
development of systems through pre-existing artifacts. There is some research
towards joining the advantages of both fields.

5.2.2 Exploiting the Domain

The sole reason in the engineering of a domain is to use it in the generation of
software products. Besides the expensive nature of reusability, an engineer
should also expect to approach it with care. Perhaps the domain definition is
regarded as a more important step. Still there are still difficulties that need to be
overcome, before fulfilling the primary objective of synthesizing the product.

Component based synthesis is a natural task for domain orientation. Yet no
established component-oriented methodology is available. Even if we were able
to map the infrastructure in the domain to a component-based design, such a
design is lacking guidance. To make matters worse, we also lack the mapping
from the domain to any system synthesis approach. Actually a component-

Component Oriented Software Engineering 121

oriented synthesis methodology is required to enable the domain-oriented
construction. The following sections discuss component-oriented software
development and the process of utilizing the domain environment for such
development.

developer Logical system
model

Module
definitions

Web services
directory

Service queries

Integration

System
connections Web services

Service calls

Figure 5.8 Locating web services and connecting them to the application

5.2.3 FODA

Some time passed after the introduction of the Domain Engineering approaches.
With the increasing interest toward composing systems out of existing Web
services and components, supporting approaches surfaced as worthy to be
mentioned. FODA [Kang et al. 1990] is an approach that developed in the
mentioned direction. The feature model that is the central element in domain
definition is now utilized for capturing the requirements and for indirectly
defining a solution. A feature is a user-visible aspect of a software system.
Feature Oriented Reuse Model (FORM) [Kang et al. 1998] was later introduced
and is based on FODA.

The feature model is basically an AND/OR tree. Higher-level capabilities of
systems in a domain take place in the higher levels of this tree. The branches
representing the AND connections imply the mandatory selection of all the
children of the parent feature. OR branches imply optional selection of the
children features. A feature model also includes constraints that require the
selection or omitting of a feature at (otherwise unrelated) location on the tree
once a specific feature is selected. Feature models have attracted attention of
researchers who proposed enhancements. For example, a constraint can be

Chapter 7 / Traditional Development of a Travel Reservation System 122

imposed such as a range of selections. In this case a minimum number and a
maximum number (both specified separately) of children features are required
[Riebisch 2003]. Figure 5.9 presents a feature model for the personal computers
domain.

Personal Computers

Software Hardware

Operating System Office Applications

XP Linux

CPU Disc Memory

Figure 5.9 Feature Model for personal computer (PC) development

Forming relations among the actors, activities, and the infrastructure will be
instrumental for explaining domain engineering. Figure 5.10 depicts the
fundamental roles that take part in the definition and the utilization of a FODA
environment.

To have a better idea about the contents of various repositories, the modeling
formalisms used in the different phases of the analysis process are listed in Table
5.2. Most of the techniques used in representing the models have existed before
FODA.

5.2.4 FORM

The most powerful aspect of FORM is its intention to link the features almost
directly to components. The domain should be so well defined that selecting
features will aid in selecting the architectures and eventually the components.
FORM suggests a four-layer structure for organizing features. On the artifact side
the constituents are also organized as layers.

Component Oriented Software Engineering 123

End-user

Context

Domain model

Architecture

Software
designer

Domain
expert

Add/delete/modify
features for context

Add/delete/modify
features for system

Add/delete/modify
features for system

New system
context

New system
software

specification

New system
software

Architecture

Domain
analyst

Requirements
analyst

refinement

Domain analysis

Figure 5.10 Defining and using the FODA framework

Table 5.2. Models used in the FODA Framework

Context Model Domain Model Architecture Model

re Diagram elationship model interaction model

t Diagram Model re chart

nal Model

n terminology dictionary

The feature model is basically an AND/OR tree. Higher-level capabilities of
systems in a domain take place in the higher levels of this tree. The branches
representing the AND connections imply the mandatory selection of all the
children of the parent feature. OR branches imply optional selection of the

Chapter 7 / Traditional Development of a Travel Reservation System 124

children features. The feature model is equipped with more capabilities. There
are also constraints, suggesting the selection or omitting of a feature anywhere in
the tree once a feature is selected and it takes part in this constraint definition.
The feature model has attracted some attention of other researchers, and
enhancements were proposed. For example, a constraint can be imposed such as
a range of branches for selection. This means that there is a minimum number
and a maximum number (both specified separately) of children features that are
needed to be selected out of a given set.

Figure 5.11 depicts the Domain Engineering process for FORM. Figure 5.12
displays the application engineering corresponding to the defined domain.

So far the location and adaptation of components were not discussed much
because in an established domain framework, most of the components are
expected to be well defined. However, as in the case of Web services or in
general, in component search and integration, more intelligent operations will be
needed. Locating a component, and then integrating it, will be more difficult.
Linguistic and intelligent support may be necessary for especially automatically
locating a component. After finding the module, the wiring-level mechanism has
to be matched so that correct functions are called in the correct manner. This
operation may require automated “adaptor” generations.

Feature model Reference
architectures

Domain
analysis

Reference
architecture
development

Reusable
component

development

Reusable
components

 Figure 5.11 FORM Domain Engineering

Component Oriented Software Engineering 125

User
requirements

System
requirements

Application
software

development

Application
architecture

selection

Application
architecture

Specification
by feature
selection

Application
software

Module
model

Process
model

Subsystem
model

Refine reusable
components

Refine
reference

architectures
Refine feature

model

Figure 5.12 FORM Application Engineering

5.2.5 Component Oriented Design

Object Orientation blended itself into component-based models. This process
took place due to two reasons: Object Oriented approaches were the current
fashion in software development and they had to be the host for the newly
developing component technologies. In other words, other alternatives were
either too old or not invented yet. Also, the close resemblance in the static look
of an object and a component definition made it easy for the Object Oriented
models to accommodate components with minor modifications.

One important notion was overlooked because of this natural trend: component
technologies needed to be utilized further for a paradigm shift they were silently
enabling. Build-by-integration notion could be realized, if a component-oriented
rather than component-based path were to be devised. It is relatively easy to
represent components in an object-oriented medium, but this does not gain us
much. The fundamental concept to structurally decompose a system in
abstraction for logical modeling, (and corresponding physical decomposition of
code for detailed design) to exploit the executable product nature of components
had to be formulated.

The industry has produced components and we are given problems to be solved
as different integrations of those components. A methodology is needed as

Chapter 7 / Traditional Development of a Travel Reservation System 126

guidance for such project tasks. Rather than concentrating in the internals of the
components, which are already constructed, the approach should concentrate on
representing a complex system as a network of these components. The network
is rather a hierarchical one, to keep the complexity under control with respect to
the human design psychology as Herb Simon suggested [1969]. Figure 5.13
depicts the transformation from a system’s definition to its realization. The
hierarchically organized abstract decomposition of the system is finally matched
with existing components. Connections shown among the nodes of the system
correspond to structural relations. Operationally important connection among the
components is based on message paths rather than part/whole relations defining
structural relations. The message connections are not shown in Figure 5.13.

requirements
 Component

oriented
methodology

Produced
system

components

Figure 5.13 Transforming requirements to a system

5.2.5.1 Expectations from a Component Oriented approach

Component orientation is enabled by the component technologies. Long after the
establishment of component-based design ideas in hard engineering disciplines,
similar leverage was being speculated in the software world. Later, the
technology is formally founded by the introduction of component protocols
[Szyperski 1999]. Otherwise, the soft nature of our discipline encourages the
diversification among the methods used in different component implementations
– thus disabling the essence of component domains. The last sought capability
will be the compliance with existing component protocols so that the
environments support final implementation activities, which may be done
automatically.

An initial requirement, however, is the modeling capabilities that provide
abstraction mechanisms. A system is desired to be composed of existing pieces.
It should not be expected that a complex system definition be compiled into a set
of interconnected components in one step! The hierarchy-based divide and
conquer algorithm to suit the human design psychology, should be employed. A

Component Oriented Software Engineering 127

system is defined in layers, starting with the most abstract whole, growing
towards the least abstract modules. In traditional software development,
probably the most troublesome activity has been the system integration. To
facilitate integration, it is the best time to provide interface [Tanik and Ertas
1992] specifications, while decomposition is taking place. When concepts are
partitioned in abstraction, the knowledge is very fresh about the whole, its parts,
and what should be communicated among the parts. Also, important Interface
specifications should be carried out simultaneously with decomposition.

As a summary, the desired capabilities can be listed as:
• abstraction mechanisms,
• top-down decomposition,
• logical model verification,
• structure-oriented design,
• correlation between Specification and Implementation, and
• compliance with a component protocol.

A full component-oriented approach is hard to find. Recent research has
demonstrated the appreciation for such a direction. Work towards component-
oriented methodologies is hinted in [Wallnau et al. 2002, Heineman and Councill
2001, Herzum and Sims 2000] as a selected list.

5.2.5.2 Peculiarities

The most peculiar aspect of Component Oriented development is its coupling
between the abstractions and implementation. On the other hand as a principle,
requirements have to be isolated from implementation details. To avoid over-
specification and to have a control over the structure, high-level abstractions
should be exercised in isolation from implementation. The discriminatory
questions, what to build and how to build refer to requirements analysis and
design activities, respectively. Concerns should be kept separate for
requirements and design, since having to work with implemented components
makes developers “design for component correspondence.” That means in the
early stages, the concern for suitable decomposition so that existing components
can match the lower-level modules should be maintained.

Why not start with components in a bottom-up synthesis to form the system?
The answer is simple: it is the system, not the components, we are trying to build.
Components are an efficient intermediary in the effort to reach the main goal –
the system. Consequently, we start from the point we are sure about: the system
definition. Any route to reach the implemented components is acceptable within
engineering parameters – there is always more than one solution to any
engineering problem. There will be cases where the decomposed abstractions
will not exactly meet existing components. Then, new components may have to
be created, existing components may be modified, or the abstraction hierarchy
will be revised. This is the point that triggers cycles of abstraction-

Chapter 7 / Traditional Development of a Travel Reservation System 128

specification/component-composition activities until a perfect match is attained.
Figure 5.14 displays a flowchart to model the sequencing of alternate activities.

Although system definition is more associated with solution patterns in a
domain- and component-oriented approach, the conceptual separation of
what/how related concerns is still valid. The boundary of this separation has
been pushed higher in the abstraction-levels. Now it is the domain analysis that
is more concerned with the question ‘how’ rather than system analysis. System
definition itself is blending the two concerns in a fuzzy region along the
abstraction scale. Figure 5.15 depicts the abstraction levels for activity types in
Domain Oriented development. This coupling between the definition and
solution is a result of limiting the domain. Parallel to an automatic code
generator, due to the domain orientation a high-level concept can directly be
linked to a solution pattern. Repetitive application of mapping definitions to
solutions allows for pattern extraction from the domain experience. Flexibility is
lost as a trade-off. As long as the application technology remains the same,
similar concept-to-implementation patterns may keep being used.

start

decompose

reached
component

level?

matched
components

?

end

integrate

optimization
decision

component
modification/
composition

modify
decomposition

yes

no

yes

no

Figure 5.14 Decomposition and composition

Component Oriented Software Engineering 129

Separation of definition and implementation concerns is mostly for the
understandability of the model. For the theoretical solvability of the problem,
separation is not necessary, and automatic code generation will work the same
for the cases of both hierarchically and flat organized instructions.

Conceptually, experienced developer will keep the what/how discrimination in
mind during any levels of modeling. The tools for modeling requirements and
design have always shared similar constructs and even similar models for both
activities. This assertion has been valid for both traditional (structured) and
Object Oriented methodologies. For the latter, even the implementation language
should better be known before starting the highest-level analysis modeling: is
multiple-inheritance allowed in the model? The answer is yes, if the language
supports!

A
bs

tr
ac

tio
n

le
ve

l

Domain Analysis

Domain
Modeling

Domain
architectures

Software
system

Requirements

Software
design

Software
implementation

Fuzzy boundary:

Definition

Solution

Figure 5.15 Shifted concerns after Domain Orientation

5.2.5.3 Specification

A fundamental advantage in Build by Integration paradigm is the shift of
emphasis to more abstract levels of specification. It is also another general fact
that errors found in later phases require more resources to fix. They should be
resolved at the earliest possible stages. This means that maximum effort should
be spent during the early activities that relate to high-abstraction levels. The
requirements and its modeling should be exercised, or refined, in order to
stabilize and clear them from errors as much as possible.

Chapter 7 / Traditional Development of a Travel Reservation System 130

When emphasizing top-down design, specification becomes more important than
ever. Ideally, specification should be the only human-dependent activity in
software development. If specified correctly and in a manner a computer can
understand, a system definition could be automatically converted to code.
Usually high-level descriptions of systems are naturally more abstract and they
lack details. For an automatic code generation to take place, the details should
also be inserted in the specifications. If it is a domain that has matured over a
period of time, then the specifications can be interpreted with their common
implementation patterns for automatic filling of the details. This requires a
populated knowledge base.

Specification of a system is carried out essentially by the process of
decomposition. An analyst knows the system by name, so the initial module is a
black box representing the system with its name. The analyst should further
know the immediate capabilities or top-level system functions do be defined as
top-level abstract components of the system. As in the case of the traditional
Lines of Code method for software size and effort estimation, decomposition can
be achieved before the completion of the analysis model. Here, the
decomposition is conducted not for estimation or other purposes; it is done only
for specification. The system requirements are modeled through partitioning the
whole into its parts, through recursion. Connectivity is also specified along with
decomposition. This is like providing the composition information after every
action of decomposition. Two different kinds of connections can be regarded as
“vertical” and “horizontal.” The vertical connections refer to part (lower end) /
whole (upper end) relations that are structural and that correspond to
decomposition. The horizontal connections refer to the relations among the
identified modules and will have reflections to the dynamic modeling.
Horizontal connectors are comprised of an early specification to compositions
that will take place later.

Expectations from a good specification environment include:
• informal entry
• automatic internal formal representation
• feedback capability, with incomplete specification
• representation of the system, plus its environment
• test for conflicts
• support abstractions and reusability at all levels
• prototyping capability for exercising the specifications

Most of the modeling activity is expected to correspond to the specification
process, rather than the design. At early stages, the tools should provide
feedback in terms of various dependencies, sequencing among events, and time
delays between actions besides different graphical views. These abilities
correspond to prototyping of the specification. Also for a more involved
futuristic addition, visual prototyping aids can be devised in a run-time

Component Oriented Software Engineering 131

simulation tool [Dursun and Dogru 1995]. That way, before implementation, a
representation of the product’s look alike can be dynamically exercised.

5.2.6 A Specifically Component Oriented Approach

Structured programming provides enough power to represent any problem
solvable by a Turing Machine [Prather 1997]. But our structured methodologies
were not satisfying the modern engineers. Also, object orientation is a powerful
mechanism, but component utilization can be more effective through a more
compliant approach, rather than accommodating components in an object-
oriented model. Build by integration and the structure emphasis are the key
notions missing in the previous modeling methodologies.

To serve the needs for the contemporary software developer, Component
Oriented Software Engineering (COSE) [Dogru and Tanik 2003] approach has
been under research. Yet in its infancy, the approach anticipates help in the
development of a supportive methodology. However, a modeling language
(COSEML) [Dogru and Altintas 2000] is already available. Implemented as
concept CASE tools, the prototypes have been used by students in class projects
[Altintas 2001]. The language provides primitives for decomposition among
abstractions and also mechanisms for their correspondence with component
representations.

Packages in COSEML operate as container abstractions that can hold packages,
data, function and control abstractions. Any of those abstract primitives can be
implemented by a component. In a model, a component represents the
implementation of an abstraction and at the same time an abstraction represents
the definition of a component. This relation between the corresponding
abstraction and component pairs is depicted by the “represents” link. First, the
hierarchy is refined to a satisfactory level by utilizing abstractions and then the
components are linked to them. Components can own interfaces and message
connections among the interfaces which are shown by the message-links. A
group of messages among interfaces of the components can be abstracted as a
“connector” primitive and graphically modeled with the abstractions. Detailed
description for the COSE, its language and usage suggestions can be found in
[Dogru and Tanik 2003].

As a final light on the topic in this section, the multiplicity that represents the
connections can be mentioned. In-line with the structural emphasis and the
cohesion principle, an abstraction can be implemented by only one component.
If it requires different kinds of services, then probably it is possible to decompose
the abstraction, define the connector among the participants of the new
decomposition, and to link the participants to different components. One-to-many
connections from a component to a set of abstractions, however, are allowed
theoretically. If a component supports the functionalities specified by more than
one abstraction, based on the concern for utilization of the existing components,
this is the way to go.

Chapter 7 / Traditional Development of a Travel Reservation System 132

5.2.6.1 Abstract Design Paradigm

An earlier study set forth the structure as a fundamental view to a model, and
decomposition as the means for specification [Dogru et al. 1992]. COSEML
borrowed its abstraction primitives from this paradigm. Also emphasizing the
higher-level of activities, this approach suggests prototyping of the specification.
The observations paving the way for the school of thought can be summarized as:
1. Hierarchy: The way to organize the modules of a complex system
2. Feedback: Evolutionary prototyping for the definition of the problem
3. Automation: Designer should receive aid in labor-intensive design tasks both

in specification and in feedback. The inclusion of the “computational aid”
had a broader range of meanings for Tanik and Ertas [1997] that shaped into
a claim in later study that is related to the very fundamentals of the scientific
method.

The paradigm proposes four stages of activities with iterations across any stages
allowed. They are specification, domain assignment, component acquisition, and
system integration. The specification activity corresponds to the observation on
hierarchy and progresses by the means of a structural decomposition. Domain
assignment is a preliminary suggestion for the development environments for
abstract modules. Once a module is assigned a domain, then an existing
computer aided environment would take on from that point in the development of
the module, constituting the third stage. There could be a variety of Domain
Environments corresponding to the third stage. The last stage was actually
thought as an inter-domain integration of large-grained modules.

This study was supported by three prototyped tools; namely DODAN [Yin 1988],
DARMS [Christiansen 1989] and SYDEN [Dogru et al 1992]. As a summary,
the high-level constructs were ready waiting for an enabling technology for
applicability. The mentioned attempts as academic research were far from
offering component protocols that industry would adopt. Also component library
domains were required to mature in the real world. Such work could only be a
result of intensive industrial experience and development. COSE actually played
the role of a matchmaker between the Abstract Design Paradigm and the
component technologies.

5.2.6.2 Towards a Methodology

COSE is supported with a graphical language and a coarse process model as
depicted in Figure 5.14. A detailed recipe in the form of step-by-step instructions
for developing systems is missing. Some suggestions are emerging in this
direction. This section briefly introduces a preliminary methodology which is
under development.

The modeling activity is fundamentally different from that of the object-oriented
approaches. Nevertheless, besides the structural decomposition view, other
aspects can be shared. The established procedures of Use-Case Diagrams and

Component Oriented Software Engineering 133

Collaboration Diagrams utilized in UML can contribute to a component-oriented
methodology.

Class Diagrams as an essential tool in object-orientation are regarded as the
semantic modeling for the Domain in our approach. Rather than incorporating
them in the definition of a system, COSE starts after the utilization of class
diagrams in domain definition and initiates the structural decomposition. Class
diagrams represent a variety of relations among classes. Inheritance and
Composition (or aggregation), are frequently referred to as structural relations.
With an inherent hint on hierarchy, such relations are invaluable in the
classification and organization of domain-wide features and concepts. Also, the
associations corresponding to the relations in the Entity-Relation Diagrams are
another very powerful means for defining the domain ingredients. It is this
conceptual coupling among items that integrate a domain’s knowledge, out of a
set of otherwise independent set of primitives.

A compact description of the process is as follows:
1. Once the idea formation about the boundaries of a system is achieved,

introduce it as the top-level abstract module using a COSEML “package.”
This is the top of the hierarchy.

2. Decompose the system into its immediate abstract components, referred to as
sub-systems. Try to correspond to structural units in abstraction, covering all
the system capabilities.

3. After the introduction of each new abstraction, review its connectivity with
the previously declared ones. Declare and specify connectors as needed.
This applies for decomposition at any level. For each abstraction, try to
declare a separate interface per connection. Specify service-requesting calls,
as well as service methods, in the interfaces.

4. Conduct a Use-Case Analysis: The abstractions taking place in the first levels
of the COSEML hierarchy can be used as “use-cases” in a separately drawn
use-case diagram, or alternatively, the hierarchy can be preserved and
“actors” can be superimposed with their relation links. Actors and use-cases
are the two elements for drawing use-case diagrams. The use-case purposes
can be achieved on the parts of the hierarchical decomposition.

5. Continue further decompositions to satisfy the use-case analysis. Actually, a
use-case diagram should be drawn per system capability – corresponding to
partially a subsystem, or a collaboration of subsystems. A use-case diagram
will require use-cases corresponding to system functions. These additional
use-cases may need new items in the hierarchy to correspond. New
introduced abstractions are the decompositions of the sub-systems. Also,
they always represent a structural part of some “whole.”

6. For every abstraction that corresponds to a use-case, draw a collaboration
diagram. A separate diagram can be used, or the abstractions participating in
the collaboration can be selected out of the hierarchy, optionally “turning
off” the others into invisibility. Connectors will model messages among the
nodes of the new diagram. The collaboration diagram may require and guide

Chapter 7 / Traditional Development of a Travel Reservation System 134

in the declaration of further decomposition products – more nodes on the
hierarchy.

7. Continue decomposition as a refinement to the specification based on your
experience, keeping in mind possible chunks of components.

8. Iterate until all abstractions are met by a set of components, as shown in
Figure 5.14. Prefer to utilize existing components before having to create
new ones, also before composing super-components out of existing ones.

9. Try to represent the components with packages only (rather than data,
function, and control abstractions).

10. For each component, try to declare a separate interface per connection.
11. Now all the components should be located and non-existing ones must be

specified.
12. Implement new components if required.
13. Integrate the system along the lines of connector specifications.
14. More tools are required. Some are currently under research and

development, such as testing and metrics tools.

5.2.6.3 Futuristic Step: Automatic Location and Integration

The domain entities are refined to the component level. This refinement
produces a specification for the components. If the specification were
sophisticated enough, a matching component could be located automatically,
even over the Internet. This would reduce the complex issue of software
development into specifications only. Such sophistication requires semantics to
evolve and yield the similar cognition on the system specification side and the
components side as well. Component specifications on the system should include
semantic information to conduct the search. The self-specifications desired to
accompany components should also include semantic descriptions. Being a
difficult topic, semantics will also benefit from limiting the domain coverage, but
will always remain to be a difficult problem.

5.2.7 Domain Model to Development Medium

In general, developing a system starts with a mapping procedure. After the initial
steps in the definition of the system, the domain model will be searched for
related concepts, processes, features, structures, and finally components. The
elements will be mapped to a component-oriented development tool. At the
highest levels, corresponding features and concepts corresponding to biggest
chunks of structures will be copied from the domain to the structure hierarchy.
Modifications will be made, and then the compliance measures will be enacted
with the new representation media for the developing system.

Other tools have been developed besides component protocols, which are directly
helping in domain-oriented development. Architectures and frameworks
correspond to implementation related to bigger chunks. Design patterns relate to
medium-sized partitions in the solution. Design patterns are abstract, but they are
smaller than frameworks. This results in a need for more instantiation and

Component Oriented Software Engineering 135

specification towards the lower-level refinement. Nevertheless, they provide the
reusability of design so their leverage should be incorporated. These ideas,
corresponding to a group of components, are powerful mechanisms in the
mapping of higher-level descriptions and more amounts of reusability, from the
domain model to the development environment.

5. 3 Summary
The benefits of Domain Oriented software development are:
• Reuse of development experience: A team, assigned to similar tasks will have

better chance to improve their experience and apply it to forthcoming projects.
• Limitation of the breadth of required learning for the development personnel:

less time in training, more effective learning.
• Reuse of requirements and design: recurring patterns make it easy to apply

high-level development activities, a targeted order-of-magnitude gain in
reusability.

• Leverage for the organization in competitiveness.
• Almost no new code modules to be tested in matured domain environments.
• A tool aid for focusing on the core competency of a development organization.
• More accurate expectations for the deadlines.

Disadvantages
• Expensive and non-predictable set-up activity for a revolutionary re-

organization scheme.
• Eventual boredom for developers for developing similar systems.
• Overhead for adjusting to new technologies, as a smaller-scale repetition of the

set-up activity.
• Supporting methodologies are not yet established very well.
• There are very few domains that have matured in terms of component

recognition.

Domain orientation utilizes previous techniques in modeling and
knowledge/information acquisition. The concept can be vitalized by the
integration of component-oriented development ideas. Some essential methods
have been devised and domain-oriented development is ready for the industry.
More tools can be incorporated to enhance the coverage of the entire lifecycle
tasks.

5. 4 Questions
1. It was explained in the text that environments trying to target many domains

have not been successful. PL1 programming language was given as an
example. Today, most of the very successful visual environments are
offering database support with querying languages and database-aware

Chapter 7 / Traditional Development of a Travel Reservation System 136

objects, besides their primary domain: GUI. How can you explain their
success in spite of the wider domain coverage?

2. Give an example development step for a specific project where automatic
filling in of details is not desired. List some conditions for which automatic
detailing is desired and some conditions for which it is not desired.

3. What are the different abilities that should be sought for the Domain defining
expert and the integrator in a domain specific software development
environment?

4. How dependent are the concepts of Domain and Components:
5. What are the factors for enabling domain-oriented development without

components?
6. What are the factors for enabling component-oriented development without

domains?
7. How can the experience of the experts in a domain be captured and

represented for reuse?
8. Could there be generic tools that can be used across any domain? How about

multi-domain components? Explain.
9. How can one combine “implementation-independent specification” with

“design for component correspondence?”
10. If a domain is supported with both abstraction-level reusable specifications

and implementation-level components, explain if there is still need for an
approach such as COSE: COSE also starts with abstractions and arrives at
components.

11. Compare the three terms: Frameworks, Design Patterns, and Components,
with respect to 1) abstraction levels, 2) granularity, and 3) their applicability
for Domain Oriented Software Engineering.

12. Propose a testing scheme for the proposed component-oriented
methodology.

5. 5 References
[Altintas 2001] Ilkay Altintas, A Comparative Study for Component-Oriented Design

Modeling, M.S. Thesis, Computer Engineering Department, Middle East Technical
University, May, Ankara, Turkey, 2001.

[Arrango 1994] G. Arrango, “Domain Analysis Methods,” in Software Reusability, W.
Shcaefer, R. Prieto-Diaz, M. Matsumoto (editors), Ellis Horwood, 1994.

[Booch et al. 1999] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley, 1999.

[Christiansen 1989] M. Christiansen, Integrating Domain Knowledge into Software
Components, Ph.D. Dissertation, Southern Methodist University, Dallas, Texas,
1989.

[Diaz 1987] Ruben, Prieto-Diaz, “Domain Analysis for Reusability,” COMPSAC 87:
The Eleventh Annual Computer Software and Applications Conference, October pp:
23-29, 1987.

Component Oriented Software Engineering 137

[Dogru and Altintas 2000] Ali. H. Dogru, Ilkay. Altintas, “Modeling Language for
Component-oriented Software Engineering: COSEML,” The Fifth World Conference
on Integrated Design and Process Technology, June 4-8, Dallas, Texas, 2000.

[Dogru and Tanik 2003] Dogru A., Tanik M.M., 2003, “A Process Model for
Component Oriented Software Engineering,” IEEE Software, Vol 20, No. 2,
March/April, pp. 34-41.

[Dogru et al. 1992] A. H. Dogru, S. N. Delcambre, C. Bayrak, Y. T. Chen, E. S. Chan,
W. Yin, M. G. Christiansen, and M. M. Tanik, “An Integrated System Design
Environment: Concepts and a Status Report,” Journal of Systems Integration,
October, 2(4), pp. 317-347, 1992.

[Dursun and Dogru 1995] Huseyin Dursun, Ali H. Dogru, “Prototyping Specifications
through Visualization,” The First World Conference on Integrated Design and
Process Technology, December 8-9, Austin, Texas, Vol. 1 pp:362-368, 1995.

[Fayad 2000] Mohamed E. Fayad, “Introduction to the Computing Surveys’ Electronic
Symposium on Object-Oriented Application Frameworks,” ACM Computing
Surveys, Vol. 32, No. 1, March: pp. 1-11, 2000.

[Gamma et al. 1995] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley,
Reading, Massachusetts, 1995.

[Heineman and Councill 2001] George T. Heineman and William T. Councill,
Component-Based Software Engineering, Addison Wesley, 2001.

[Herzum and Sims, 2000] Peter Herzum and Oliver Sims, Business Component Factory,
Wiley, 2000.

[Holibaugh 1993] Robert Holibaugh, Joint Integrated Avionics Working Group
(JIAWG) Object-Oriented Domain Analysis Method (JODA), CMU/SEI-92-SR-3,
November, Pittsburgh, Philadelphia: Software Engineering Institute, Carnegie
Mellon University, 1993.

[Hopcroft and Ullman, 1979] John E. Hopcroft, Jeffrey D. Ullman, Introduction to
Automata Theory, Languages, and Computation, Addison Wesley, 1979.

[Itoh et al. 1998] Kiyoshi Itoh, Toyohiko Hirota, Satoshi Kumagai, Hiroyuki Yoshida
(editors), Domain Oriented Systems Development: Principles and Approaches,
Information Processing Society of Japan, Gordon and Breach Science Publisher,
Japan, 1998.

[Kang et al. 1990] Kyo C. Kang, Sholom C. Cohen, James A. Hess, William E. Novak,
A. Spencer Peterson, Feature-Oriented Domain Analysis (FODA) Feasibility Study,
CMU/SEI-90-TR-21, ADA 235785, Pittsburgh, Philadelphia: Software Engineering
Institute, Carnegie Mellon University, 1990.

[Kang et al. 1998] K. Kang, Kim, S., Lee, J., Kim, K., Shin, E., Huh, M., “FORM : A
Feature Oriented Reuse Method with Domain-Specific Reference Architectures”,
Annals of Software Engineering, Volume 5, J. C. Baltzer AG Science Publishers,
Red Bank, NJ, USA, pp. 143-168,1998.

[Neighbors 1989] J.M. Neighbors, “DRACO: A Method for Engineering Reusable
Software Systems,” Software Reusability, Vol. 1, pp: 295-320, ACM, 1989.

Chapter 7 / Traditional Development of a Travel Reservation System 138

[Prather 1997] R. Prather, "Regular Expressions for Program Computations," The
American Mathematical Monthly, Vol. 104., No. 2, pp. 120-130, 1997.

[Riebisch 2003] Matthias Riebisch: “Towards a More Precise Definition of Feature
Models.” Position Paper. In: M. Riebisch, J. O. Coplien, D, Streitferdt (Eds.):
Modelling Variability for Object-Oriented Product Lines. BookOnDemand Publ.
Co., Norderstedt, 2003. pp. 64-76.

[Simon 1969] Herb A. Simon, Sciences of the Artificial, MIT Press, Cambridge,
Massachusetts, 1969.

[Simos 1996] M. Simos, “Organization Domain Modeling (ODM): Extending
Systematic Domain Analysis and Modeling beyond Software Domain, IDPT, 1996.

[SPC 1990] Software Productivity Consortium, A Domain Analysis Process
Domain_Analysis-90001-N, January, Herndon, Virginia, 1990.

[Szypersky 1998] Clemens Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison Wesley, New York, 1998.

[Tanik and Chan 1991] Murat M. Tanik and Erik S. Chan, Fundamentals of Computing
for Software Engineers, Van Nostrand Reinhold, New York, 1991.

[Tanik and Ertas 1992] M.M. Tanik and A. Ertas, “Design as a Basis for Unification:
System Interface Engineering,” ASME PD-Vol. 43, pp: 113-114, 1992.

[Tanik and Ertas 1997] M.M. Tanik and A. Ertas, “Interdisciplinary Design and Process
Science: A Discourse on Scientific Method for the Integration Age,” Journal of
integrated Design and Process Science, September, Vol. 1 No. 1: pp. 76-94, 1997.

[Wallnau et al. 2002] Kurt C. Wallnau, Scott A. Hissam, and Robert C. Seacord,
Building Systems from Commercial Components, Addison Wesley, 2002.

[Yin 1988] Weiping Yin, An Integrated Software Design Paradigm, Ph.D. Dissertation,
Southern Methodist University, Dallas, Texas, 1988.

Component Oriented Software Engineering 139

Chapter 6
Chapter 6 Component Oriented Software Engineering

6. 1 Introduction
Software is now recognized as a critical field in the rapidly advancing human
history as we prepare for a new millennium. Intelligence related solutions have
recently moved from mechanical or electrical technologies to software. More
artifacts are containing a computational element as an integral part. Yet the
engineering for the software technologies are far from the maturity levels other
disciplines have reached. Within this context, one of the most important
characteristics of this field is that software is still being custom-built rather than
being assembled from existing components [Pressman 1997]. The predecessor
fields have discovered this “reusability” long before software that should have
exploited the notion through more concrete approaches.

It was only after the emergence of component technologies [Krieger and Adler
1995] we started to anticipate the benefits of an engineering methodology for
system development that is formally oriented toward reuse. Today, extensive
research and technological utilization work for the component technologies are
being reported constantly. Yet the potential contribution to increase the
development efficiency by an order of magnitude is not exclusively addressed.
Defining wiring-level issues and representing components in Object Oriented
(OO) platforms have constituted the bulk of this work. Now, we must capitalize
on the feature of components that will enable a paradigm shift towards
“integration” [Tanik and Ertas 1997] rather than “code development.”

Observing the demanding market for software with complexities in excess of ten
million lines, the proposing of new methods that only improve the development
efficiency through linear gains will not be satisfactory. Requiring development
periods comparable to a decade, such projects are deemed to be extremely
troublesome. The definition of the project will drastically change during this
period. Initial request will evolve in the context of the rapidly changing world,
new technologies, and business or market conditions. Rather than undertaking
such huge risks, readily existing code should be utilized that has been developed
and tested already. Component technologies offer the ease of the utilization of
existing modules. Meanwhile new engineering approaches are needed that
facilitate the formulation of problems in a decomposable manner. If its modules
can relate to existing component technologies the decomposition model will aid
the integration of the system.

Component Oriented Software Engineering 140

6.1.1 Recent Trends

Computer science itself is recent. In the course of the last half century the third
radically different paradigm is in the making. The ad-hoc approaches were
replaced with structured methodologies after the structured programming
languages were appreciated. Another decade passed before OO approaches
could follow their enabling technologies – the OO languages. Currently,
Component technologies are maturing and attempts to engineer their utilization
are defining the Component Oriented Software Engineering (COSE). The
infancy of the approach asserts itself with modest definitions. Most of the
attempts can be referred to as Component Based [Heineman and Councill 2001]
rather than Component Oriented. The earlier work concentrated on the
connection of a pair of components. Later, higher-level concepts were exploited
such as design modeling to accommodate components in OO representations.

The alternative offered through OO platforms to accommodate components
carried the intention to develop the code. To obtain the desired leverage gain on
the order of a magnitude, Build by Integration paradigm is offered. One way to
utilize this concept is by maturing the Component Oriented Software Engineering
[Dogru and Tanik, 2003]. The orientation regards composition of components
from the requirements specification stage onwards. Even logical modeling takes
into consideration the existing set of components.

Components are often regarded as an extension to OO technique because of the
resemblance of interface definitions to class definitions. If anything is to be
developed, the contemporary approach is OO. Therefore it is natural to develop
components using OO techniques. Components obey a protocol that includes
structured interfaces and the commitment to provide the services declared in the
interfaces. As long as it sticks with these commitments, a component can be
developed through any non-object-oriented approach, also.

Development, wiring, and protocols for components are important; they
constitute the enabling technologies for the Component Orientation. Although
improvements will still be welcomed, the fundamental problems defining the
“software crisis” are not related to technology level issues. There is enough
know-how built for connecting and running components, despite the fact that
there is still plenty of room for further improvement. Also there are so many
algorithms coded before, and creating new components or converting existing
code to comply with component standards does not seem to be extremely
complex. New focus should be on searching and integrating existing components
to satisfy a given set of requirements.

6.1.2 Constituents of the new approach

So much has been investigated towards putting component orientation into
practice but yet the industry is still in its infancy. Component Oriented Software
Engineering (COSE) is developing with its concepts and tools. The idea is based
on the principles of Herbert Simon [1969] and the success routes of the previous

Chapter 6 / Component Oriented Software Engineering 141

engineering disciplines. The “Abstract Design Paradigm”, [Tanik and Chan
1991] bridged that early work to a comprehensive engineering methodology idea.
Later the approach gained its fundamental definitions [Dogru and Tanik 2003], a
graphical modeling language (COSEML [Dogru and Altintas 2000]), and some
research defining parts of a methodological approach [Bayar 2001, Salman
2002]. Possible complementary utilizations of some new ideas such as design
patterns and frameworks are being studied for the new paradigm [Avkarogullari
2003]. Basically process models, supported with languages, tools, and
methodologies are required in order to capitalize on the paradigm in the field of
engineering practice. The research and the development of supporting tools are
in progress. The following sections introduce so-far-established constituents of
the approach.

6.1.2.1 Possibilities

Expectations from the new orientation are growing and also new avenues in
computer science are being developed. If successfully deployed, COSE may be
the default and natural way to the software industry and the innovations will be
appended to this kind of approaches. Information Theoretic and quantum
computing related research is not far from connecting with the “systems view,”
where a set of communicating well-defined components need to be modeled.
Aspect-oriented software development is another idea that is heavily being
discussed. Here, the idea is to have a handle on user-related aspects that cut
across all the units of the software. It is not feasible, for example, to localize the
security aspect of a software system to an object or a component. Components
are a huge step towards separation of concerns. Also their connection for any
“aspect” can be more structured. Component orientation promises the capability
to support the novel ideas. On the process dimension, agile methods are the
innovation and an efficient build-by-integration approach may find a wonderful
application foundation within an agile methodology.

A system integrator only needs to understand the interface definitions of the
components. How the component works internally is not very important.
Building on this idea, one can extend the notion to the hardware/software co-
design practices. Actually, the system specification starts in logical levels and
the developers do not need to rush into decisions about the development media
for the future components. In other words, they should not know if a specific
function will be implemented in hardware or software. Even, different kinds of
hardware such as mechanical or electrical are considered in this kind of a hybrid
co-design. More and more systems involve multi-disciplinary engineering.
Component orientation also supports the abstract design notions where the
discouraging of over-specification is rewarded with optimal solutions to multi-
disciplinary engineering designs. Figure 6.1 depicts a process model that has
been studied for a multi-disciplinary platform supporting Abstract Design
Paradigm (ADP).

Component Oriented Software Engineering 142

The ADP suggested decomposition of the logical specification so similar to the
desired approach for COSE. The next stage refines the defined units of the
logical decomposition, possibly assigning a development domain such as some
hardware or software field. Refined to an almost complete specification the
decomposition units are well-suited candidates for the modern components to
replace. However, they may still be at a level that is not detailed enough. Such
design details may be completed in the next stage that is responsible for
completing the individual units – those are modules or components. Finally, the
polished components will be integrated using the connector/interface
specifications that were defined starting with the decomposition stage.

specification by
decomposition

software /
hardware medium

assignment

module
procurement

system
integration

Figure 6.1 Abstract Design process for multi-disciplinary development

The emphasized interface notion gains some different flavor when hardware
components are also accounted for. Interface engineering needs to be defined
and supported with domain-specific lower-level models in addition to abstract
level specifications. In high abstraction levels, interface specifications may be of
a similar nature. Whereas, in the lower-levels of specification corresponding to
implemented components, the interface ingredients will represent particular
quantities (units) such as volts, meters, etc. Moreover, interfaces linking cross-
domains will have to address units from different domains. In the lowest-levels,
this kind of an interface corresponds to the classical definition of a “transducer.”
A microphone is a transducer that converts the values in the acoustics domain to

Chapter 6 / Component Oriented Software Engineering 143

the values in the electrical domain. Recalling the fact that the “interface” has
been the location of many failures, the due deserved emphasize should be
returned to the interface concept, thereby addressing a key problem area. For
instance, tragic consequences occurred when space shuttle Challenger exploded
as a direct result of an interface problem: the faulty gasket between the fuel tank
and the body.

6.1.2.2 Incorporating architectural concepts

Object Orientation provided the organization of some general principles in a
formal presentation. More concepts developed building on the new practices
such as component technologies and domain orientation. In this section, the
issues in possible incorporation of the architectural frameworks and design
patterns are being investigated.

Design patterns are introduced in [Gamma et al., 95] as generic solutions to
recurring sub-problems. Design patterns are abstract mechanisms. They can be
represented through collaboration models [D’souza 98]. In COSEML, a small
number of components can represent a design pattern, although at an abstract
level. To utilize the concept, a logical as well as an implementation level
representation of components is proposed in [Avkarogullari, 2003]. Since
COSEML can contain both logical and implementation level representations for
components, a design pattern can be placed as a part of the decomposition in
either abstraction level. The instantiated details of a pattern are also maintained
as a unit. Whereas frameworks are already implemented structures but they
correspond to bigger chunks of a solution than design patterns. Figure 6.2
depicts this relation among the architectural elements with respect to size and
abstraction levels.

Any element in a COSEML model corresponds to a structural piece, big or small.
For those that include more than one component, there has to be an abstract
representation.

Component Oriented Software Engineering 144

size

design
pattern

A
bs

tra
ct

io
n

le
ve

l

component
framework

Figure 6.2 The abstraction levels of various architectural elements

6.1.3 Component Oriented Process

The fundamental concepts and a process model were introduced in [Dogru and
Tanik 2003]. According to this process that orients the developers towards the
possible availability of a component set, the first critical step is to decompose the
definition of the system into an abstract set of communicating components. The
communication among the units implies a connectivity that is modeled through
abstract connectors. The decomposition activity hence results in a defined set of
abstract components and a set of connectors as shown in Figure 6.3. An abstract
component is actually a specification of a real component to be searched. Using
the abstractions as definitions of what to expect from the (hopefully existing)
implemented components, the component acquisition stage can be activated.
There may always be some implementation or modification need, but the
ambitious expectation is that most of the needed components should be available
in the market. Integration of the gathered components follows, guided by the
specifications contained in the connectors.

An efficient development will be supported better in matured domains. A
domain is a set of applications that solve problems in a field of industry. Domain
orientation, therefore, is a closely related concept to component orientation. One
way to improve the effectiveness of the proposed approach is to conduct domain
analysis [Itoh et al. 1998]. Domain orientation will supply the developers with

Chapter 6 / Component Oriented Software Engineering 145

tools and components at various levels of abstraction, besides know-how and any
practice that can be utilized in the convention of patterns.

Although a revolutionary way of thinking is sought for software development,
there is so much that can be exploited out of the practices defined so far. As long
as the critical issue of complying with the new paradigm that suggests Build by
Integration, borrowers from existing methodologies are welcome. In this respect,
the early symbolic definitions in the ADP research are replaced by their UML
[Booch et al. 99] counterparts, where possible. The fundamental view is the
structure of the model that should support a developer’s decomposition, and later
composition decisions. COSEML was designed with respect to these
considerations. The widely accepted use-case and interaction modeling defined
in UML can be adopted by COSEML. The abstract-level elements in a
COSEML model can be used as ovals in a use-case diagram. To employ the
interaction modeling such as that in UML, represented in collaboration or
sequence diagrams, the messages in COSEML provide the basis. Messages,
representing the lowest-level connector information can be ordered by means of
numbers to yield the collaboration models in UML.

System

Domain
Analysis Domain

Model

Abstract
Components

Connectors integration

search Components

Requirements

decomposition

Figure 6.3 Component Oriented development process

6.1.3.1 Solution is available in parts

Our goal is to partition the system into modules in such a way that those modules
can be implemented by existing components. Then the system development
reduces to:
• decompose
• find
• integrate
• rather than the existing strategies that implies

Component Oriented Software Engineering 146

• define
• develop from scratch.
• However, there is a paradox that has to be addressed in this simple and

radically new approach:
• During decomposition, existing components should be considered for

efficiency;
• On the other hand, early specification should not consider implementation level

issues.

This observation is supported by the concern about the violation of the
conventional practices: There seems to be an ambition to defy the following two
principles:
1. Specification of problem vs. solution should be kept separate
2. Over-specification should be avoided.

Conventionally, requirements related activities are concerned with the definition
of the problem. Developers should be careful about not defining the solution
during requirements specification, in order to comply with the first principle.
Respecting the second principle even when refining the implementation-related
specification, namely during design, initially the models should only incorporate
more abstract definitions. This early design activity is commonly referred to as
the “logical design phase.” COSE, implying an efficient specification activity
through an existing set of (implementation level) components hence seems to
propose an unconventional understanding.

An explanation to this problem is offering some justification to the desire to
employ COSE with domain engineering support. The problem definition is
assumed to have been accomplished for a family of problems; namely, the
domain. Most of the requirements engineering should be conducted while
defining the domain. Actually the boundary between the two concerns (problem
vs. solution) is pushed towards the earlier activities.

As in the TTL example, component orientation is targeting the fast composition
of the solution in a dependable manner, at the expense of losses in efficiency
which should be absorbable. When conducted in the context of a domain, the
COSE practice requires intimacy with the problem classes and an ability to
quickly link the problems to solutions in order to yield the desired development
efficiency.

Looking closer, one can see that actually it is not the solution being specified, but
the definition of the solution. The very nature of components isolates the
definition from implementation. It is the specification of a component molding
in the form of interface descriptions that the developer regards while conducting
the decomposition. As a result, defining the solution is never a concern in
COSE. The slight conceptual paradox for a skeptical colleague is caused by
regarding the logical definition of implemented units in early stages.
Nevertheless, this change in the conceptual activity classifications is worthy of a

Chapter 6 / Component Oriented Software Engineering 147

debate. Figure 6.4 displays the concepts related to activity stages suggesting that
COSE is basically involved with an intermediate level of activity that can be
defined as “detailed requirements and logical design.” Domain Engineering may
be involved with the development of components also. This would shift the
burden of all kinds of activities to domain engineering. Here we are interested in
“Domain Analysis” only where implementation issues are not of any concern.
The “Component Development” kind of engineering shown in Figure 6.4 may
very well be conducted as part of a Domain Engineering effort.

Component
Development

COSE

Domain Analysis

Engineering
Type

TraditionalActivity
Category

Requirements

Detailed
requirements/
Logical design

Detailed design/
Implementation

A
bs

tra
ct

io
n

Le
ve

l

Figure 6.4 Conceptual activity classification related with COSE

6.1.4 Component Oriented Modeling Language

The modeling language had to be graphical and well suited for visualizing a
hierarchical decomposition. A typical development starts with the abstract
definition of system parts starting with subsystems and advancing towards lower-
level components (in abstraction). Later physical components need to be
introduced that are responsible for implementing the responsibilities encapsulated
in the previously defined abstract modules. A special kind of a link connects an
abstraction to a component that is actually its implementation. This link is
referred to as the “represents” link. This link points to a component that
“represents” an abstraction in the physical world, and at the same time an
abstraction represents the component at a logical level. Relations among the
abstractions are modeled through connectors. Connectors represent
communications among abstract or among physical components. The default

Component Oriented Software Engineering 148

links that connect the elements of the top-down structural refinement hierarchy
are the composition links.

Abstract components in COSEML correspond to packages and data, function,
and control abstractions. Specific icons depicted in Figure 6.5 represent these
logical units. At the physical level, components are the main units. Any
component comes with at least one connector. Connectors are also represented by
a specific symbol. For the components that have only one interface, the symbols
for the component and an interface are almost joined forming another special
kind of a symbol.

package function

data control

Figure 6.5 Abstractions in COSEML

Thus, accommodating both logical and physical components and structural and
operational connections, one COSEML model is capable of representing a
complete model. Representing different aspects or parts of a system is also
possible.

Package is a symbol that is used mainly for encapsulating the more primitive
abstractions (data, function, control). A package defines a scope for the
contained abstractions and forms a main node in the hierarchical decomposition.
There can be further packages and other abstractions inside a package. Actually,
COSEML does not constrain the types of abstractions that can be declared inside
another. Such limitations as stating that “a data abstraction can only have data
abstractions, as its components” can be defined in a methodology.

Former research has proven that specification of the aspects organized in three
dimensions, namely data, function, and control is sufficient to represent any
process such as a computer program. Actually, programming languages and
modeling languages directly or indirectly address those three dimensions. That is
the reason for COSEML to include abstractions besides the “package” that
represent the specifications for the three fundamental dimensions. A similar
concern has been articulated in the definition of the structured languages. The
Turing Machine equivalent modeling power can be attained if the three control

Chapter 6 / Component Oriented Software Engineering 149

structures are addressed; these are sequence, condition, and repetition. Offering
such abstractions, COSEML ensures the ability to represent any functional
requirement of a system.

Of course, so far, the non-functional requirements have not been considered.
This language merely offers a structure-oriented decomposition alternative to the
existing modeling languages that are object-oriented or traditional.

Especially the abstract level units should be used for high-level abstractions
corresponding to the system under development. Although concepts such as data
and function may evoke programming-level considerations, here they are
abstractions and they need to relate to logical definitions in the system
specification. Data abstractions can be used to model data structures that
correspond to high-level entities in the requirements model. A data abstraction
can declare internal operations just like those of a class in OO modeling.
Similarly, function abstractions may have their internal local data structures and
they are meant for representing high-level system functions. Control abstractions
represent basically state machines, accepting messages that cause state changes.
During a state transition, outgoing messages can be generated. State changes
also can trigger the execution of the function abstractions, or operations inside
data abstractions.

6.1.4.1 Leveling with components!

The abstract elements are used to define the “decomposition.” However, this
decomposition may yield a set of abstract components that may or may not
correspond to existing components. An efficient development will yield a set
that does match existing components. This requires some experience and a good
knowledge of the defined components in a development domain. Regardless of
how the abstract decomposition was used, it was for defining the real component
set that would realize a solution to the specifications. A set of real components
has to be acquired and connected to compose the system. The model should be
capable of representing the run-time behavior also. Therefore, components,
besides being connected to their abstract definitions, are connected among
themselves through messages that define the set of operations to yield the desired
system functionality.

The components and their connections may recall the “collaboration” technique
employed in OO development, especially through UML. A similar approach is
also possible using COSEML. Once a structural break-down is facilitated, the
collaboration of the defined units can be studied also in COSEML models having
accomplished the main problem of identifying the sub-solutions to the problem.

A connector between two components represents a set of bi-directional messages.
Following the convention in component technologies, events are considered as
well as methods. Although a method and a message that eventually calls that
method are capable of representing the semantics of an “event call,” a
component-related representation should address the events. An event is actually

Component Oriented Software Engineering 150

a special kind of a message that is generated by an external or a sporadic request.
In any case, a collaboration can be modeled as an ordered set of methods or event
calls.

6.1.4.2 Interfaces and messages

Universally, an interface defines the incoming calls. These are the methods or
event notifications that result in a component performing a service. Some
component protocols suggest the representation of the outgoing calls in the
interface, as well. This means, besides publishing what this component can do
for the external world, what this component needs as services during its effort to
accomplish its functionality should also be defined.

This problem is analogous to the representation of external references in a multi-
file development platform. If not compiled at the same time, different units that
make a program have to know where to locate the external functions that they
need, but do not have, and do know that other units have. Compiler technologies
have two different approaches to resolve external dependencies:
1. Each unit publishes the services it can offer to outside.
2. Each unit declares what external services needed by it.

Example technologies are C and FORTRAN compilers. C language
development suggests the publishing of the offered services in a kind of an
interface structure commonly referred to as “.h” files. Whereas FORTRAN
source code files declare function names as “external” if such functions are
required to be offered by other files. A linker is a system program responsible
for resolving the cross-file call references while it unites different modules as an
executable program (linking).

When it is components rather than source files, we may prefer to indicate both
kinds of external references, request and response, so that we know what it takes
for the component to integrate. What services a component offers in this case
may even be less important. We have incorporated this component because of
what it should do for us. On the other hand we should also know what other
services this component relies on, so that we make sure to include additional
components that include such services.

Considering a CO representation that does not support outgoing methods, a
method connection has to originate from a component rather than from a specific
“outgoing method slot” in an interface. COSEML allows messages originating
from non-specific locations on a component. Also, there is no restriction to
interpret methods as only “response methods.” This means, some of the methods
declared in the methods chamber of an interface can be used as requests as well
as some others as responses. It would be more preferable, however, to separate
the two kinds of methods. The interface representation in Figure 6.6 contains a
possible adaptation with a specific chamber dedicated for “request” kind of
methods by splitting the methods chamber using a dashed line.

Chapter 6 / Component Oriented Software Engineering 151

It should be noted that the interfaces act as a specification of a component. This
additional representation in an interface that may be handy as an interface is a
partial specification to a component. Actually, a component-based development
considers only the interfaces of a component (ignoring the internal
implementation). In other words, using implementation-level terminology, a
program is written to the interface, rather than to the internals of a component.

The method or event links take place at the lower levels of a COSEML design
together with the components and their interfaces. A graphical representation of
the physical-level elements is shown in Figure 6.6.

Component

interface 1

interface 2

interface n

•
•
•

Interface

properties

methods

events-in
events-out

requests

Figure 6.6 Physical level elements in COSEML

To accommodate different interface definition trends, the language should be
capable of representing method calls that originate freely from any location out
of a component, rather than specific outgoing message definitions (or requests, as
declared in Figure 6.6). As a result, a method call can originate from a request
defined in an interface, from a non-specific location of an interface, or from a
non-specific location of a component.

6.1.4.3 Connectors

The representation of a specific connector can be repeated in a model at various
levels. Connectors can be drawn between:
• two abstractions
• interface ports of two components
• headers of two interfaces
• A method or event slots of two interfaces in the form of a set of method or

event links.

Figure 6.7 displays the different kinds of connectors.

Component Oriented Software Engineering 152

abstract connector

method connector

event connector

Figure 6.7 Connectors in COSEML

Methods and events conduct similar duties. They both trigger the execution of a
process, they carry some information, and they may have some implied
synchronization semantics. However, the popularity of “event-based
programming” especially when used to define the graphical user-interface
behavior has been a factor in the events having to be explicitly addressed.

It is common for the component technologies to differentiate between the input
and the output events. Components can subscribe for “input events” with the
environment, in order to be notified whenever the event happens. Also, a
component can publish “output” events, so that the environment will prepare
itself to be notified in case the component generates such events. However, the
differentiation between the input and output methods is not as universal. Some
literature suggests the listing of the input methods only.

6. 2 Development
Three fundamental types of activities are concerned here for the demonstration of
the CO specific features:
• Requirements Specification
• Design
• Implementation.

Some key concepts should be repeated here: Implementation is mostly
integration and some modification, and the traditional boundary between the
requirements and design deserves a different angle of sight. Actually, the
“implementation” as a major activity in conventional approaches is basically not
existent here, therefore such naming of this phase loses its meaning.

Requirements specification is basically a decomposition activity. System
definition is conducted by separation into abstract components and by
specification of relations among those parts. Whereas the traditional design

Chapter 6 / Component Oriented Software Engineering 153

activity corresponds to mapping of the abstractions to the real components and
further detailing the connections, especially among the components.

6.2.1 Requirements Specification

Independent from the approach’s being traditional, OO or CO, requirements is a
key activity and should be conducted with care and methodology. Promoting this
activity to the level of an engineering discipline would not be an over-estimation.
Besides the acquisition of the knowledge through different means, and
negotiating with the customer, the information must be documented in
“specification” form. This form is very dependent on the approach. In COSE,
the result of the requirements engineering is a set of connected abstract
components defined in a hierarchy. For the elicitation task, existing techniques
can be used and supported with visualization and communication tools such as
the use-case analysis. OO approaches also have incorporated other techniques
that are not necessarily OO. Some examples to such techniques are the use case
and state chart diagrams that are successfully blended into modern
methodologies. There is no reason a CO approach should not utilize these also.

An OO approach can be revisited to adopt use-case analysis in COSE. We
suggest starting with identifying system capabilities that can also be interpreted
as highest-level system functions. A use-case diagram can be drawn per system
capability. Every use- case (oval) in these diagrams corresponds to system
functions and should be further specified through scenarios. The scenarios will
be modeled by a sequence of messages to enact them. This brings us to another
technique borrowed from the OO graphical tools that is collaboration. UML is
the most widely used OO formalism and the interaction diagrams (collaboration
and sequence diagrams) demonstrate a set of messages among objects
corresponding to run-time behavior. In COSEML, messages do not appear in the
abstract levels of a model. Their definitions can take place in the specification of
the connectors. It is only after representing the abstractions by components is the
instance when the actual messages are drawn.

The use-case diagrams are limited to the abstract elements of a COSEML model.
Ovals in a use-case diagram can correspond to packages or function, data, or
control abstractions. After presenting the use-case diagram to the user in UML
syntax, the diagram can be replaced by another version where the ovals are
replaced by package, data, function, or control elements. Figure 6.8 represents a
simple demonstrative case where system functions correspond to different types
of abstract COSEML elements. It should be kept in mind that any element in a
use-case diagram actually is a node in the hierarchy diagram that is the main
COSEML view. Some abstract elements are copied to a use-case diagram.
Actually, those elements are declared in the hierarchy diagram, and used in the
use-case diagrams.

Use-cases represent system functions. A use-case diagram conforming to a
hierarchy diagram implies the top-level decomposition is to be conducted with

Component Oriented Software Engineering 154

respect to system-functions rather than structural chunks. If this implication will
not work out for the current system being modeled, a formal adaptation of use-
case diagrams does not prove viable. In that case, use-case diagrams will be
treated as separate tools to study requirements. Then necessary mappings of
partial or combined use-cases (system functions) to COSEML elements can be
conducted. Actually, the function abstractions in COSEML are its corresponding
elements to the use-cases.

includes

includes

extends

Sale
Accounting

Inventory
salesperson

Figure 6.8 COSEML elements in a use-case diagram

If use-case analysis is selected to be the initial activity, highest levels of the
COSEML specification will assume the information modeled in the use-case
diagrams. Continuing specification decomposes the defined elements to lower-
level abstractions, hence developing the hierarchy top-down. User requirements
will be accommodated more in the higher-level elements. The development team
will introduce more and more of their own inputs to requirements as the
decomposition proceeds downward.

During the decomposition it is important to pause after the inclusion of every
new element, investigate the need for new connectors, and create an update on
the existing connectors. The best time to explain how parts will connect is the
time when they are being separated from each other.

6.2.1.1 Domain Model Utilization

Software Engineering had discovered the virtues of reuse relatively long time
ago. By now, it is widely accepted that reuse of higher abstraction entities
besides code is very important. A domain can offer partial solutions in a wide
spectrum of abstraction levels and other concerns. Recalling the main view of
COSEML which is a hierarchy diagram representing the whole system, an
intermediate level solution is a sub-tree in this diagram. Such a partial solution

Chapter 6 / Component Oriented Software Engineering 155

can be retrieved from the domain model and pasted into the model under
construction. This imported sub-solution may need some modification. This is
an effort welcomed, as opposed to wasting time reinventing the wheel. It should
be recalled that after any inclusion to the diagram, the connection scheme should
be revised.

The domain model will provide the developers with
• know how
• a dictionary of domain terminology
• reusable requirements models
• reusable design models
• Reusable implemented software components.

The developer’s task should start with adopting chunks of requirements
information from the domain, for the current development. Any requirements
reuse as such also earns the team considerable amounts of design and
implementation as well. When a problem is defined, its solution is also defined
for a matured domain. Once again, this solution may not be exactly what is
desired, but still minor modifications are better than creating a whole solution
from scratch. This adopted solution piece can be as small as a single abstract
COSEML element corresponding to one component. Or it could be as big as a
system capability. In this latter case, the component is said to be of large
granularity. The Common off the Shelf Components (COTS) introduced earlier
than the contemporary component technologies are generally of this large
granularity class. As an example, the inventory capability of small business
automation software could be handled by a large-grained component.

In the context of utilizing sub-solutions of various sizes, design patterns can be
regarded as medium granularity components. Their abstract nature, however, is
meant for representing program structures in a domain independent manner.
Two issues should be remembered in this section about design patterns:
1. COSEML treats instantiated versions of design patterns as a sub-tree in the

main decomposition diagram
2. Dynamic aspects of design patterns can be modeled using collaboration

diagrams after their composition are defined in terms of architectural
components.

The first item implies that different instantiations of a design pattern can have
specific usages per domain. After such an adaptation, a new name can be given
to the instantiation that is meaningful for the domain. The second item is an
adoption from OO techniques, which can be useful in articulating on the relations
among higher-levels of a COSEML representation. Next section investigates a
suggested collaboration analysis that supports the component-oriented approach.

Component Oriented Software Engineering 156

6.2.1.2 Interaction Analysis

UML, as the leading OO modeling approach, has been used by a wide majority
of software developers while depending on the interaction diagrams heavily.
Interaction diagrams are the collaboration and the sequence diagrams, both
containing the same information but represented in different views.
Collaboration diagrams are considered in this chapter but it is not difficult to
extend the idea to the sequence diagrams.

Dynamic aspects of a model are represented in collaboration diagrams that
correspond to a scenario to explain a system-level function. A sequence of
messages ordered in time is the basis of the representation mechanism. The
system function described verbally in the form of a scenario script will be
modeled through ordered events. The events correspond to messages that
actually mean conducting methods or input event processors. Eventually a
scenario is enacted by the ordered execution of component functions specified in
the collaboration model.

To visualize collaboration models, communicating parties besides messages have
to be drawn. These parties are objects in UML, and components in COSEML.
However, COSEML’s nature of representing abstract as well as physical
components in the same decomposition suggests here that collaboration logic can
also be applied to two different abstraction levels. The interaction modeling can
be superimposed on the main decomposition view. For a better interaction model
representation, the parties taking part in a collaboration can be copied from the
main diagram to a specific collaboration diagram. This way the information
hiding principle can be obeyed towards the understandability of the collaboration
logic.

Special care is needed to construct a logical-level collaboration model. The
fundamental elements of an interaction are messages that cannot be drawn in the
logical (abstract) levels of a COSEML representation. At these levels there are
abstract elements such as packages and abstractions of primitive specifications
that can be related only through connectors. Connectors are not only
abstractions, but they also represent a set of messages the physical components
will use for communication purposes. For simple cases, a logical level
interaction can be shown using connectors while not further specifying the
messages within them. This will not yield a complete collaboration model since
the sequence of the messages cannot be represented. To exploit the interaction
model, messages are allowed in collaboration diagrams among abstract elements.
In UML, collaboration diagrams can be incorporated in requirements modeling,
implying that every kind of information is logical. Objects in UML may be
considered as corresponding to our components as physical level entities.
However, UML incorporates objects in both requirements and design models.

The messages to be introduced in the logical (or abstract) collaboration diagrams
are also meant to be treated as logical representations of messages. Physical
messages are actually requests made to the methods of existing components. The

Chapter 6 / Component Oriented Software Engineering 157

logical messages introduced in an abstract collaboration diagram may not find
exact matches in the later stages where components are located: Existing
components may not honor the services an abstract model suggests. This is like
the basic decomposition risk of not being able to match the lowest-level
abstraction elements to existing components.

An example, “sale” scenario is used in the logical and physical (run-time)
collaboration models represented in Figures 6.9 and 6.10, respectively. In this
example, a sale request triggers a check for the availability of the item in the
inventory. If the sale operation proceeds, two other main tasks have to be carried
out: recording the sale information in the accounting sub-system, and updating
the inventory. After a sale, the quantity of the sold item is reduced and this final
quantity value has to be recorded in the inventory to replace the former value.

Sale
Accounting

Inventory

1: check availability
3: update quantity

2: record sale

Figure 6.9 Logical level collaboration example for sale operation

Collaboration analysis is another tool to be exploited in the validation of the
defined set of abstract components. Tracing the message sequences, one can
confirm that system functions can be achieved. However, this validation only
applies to the logical model. The natural next step after defining a decomposition
of the system in the form of a set of connected abstract elements is the matching
of those elements to physical components. All the requirements of the system
should be represented by the set of physical components. There is no guarantee
that the physical components, when located, will conform to the specifications
set forth in the abstract model. This non-conformance is a problem for both
locating a physical component all together, and for the available services offered
by the component the instant it is located.

Component Oriented Software Engineering 158

1
3

2

Sale-IInventory

Inventory-ISale

check availability
update quantity

Accounting-ISale

record sale

Figure 6.10 Run-time collaboration diagram

6.2.2 Detail Design and Implementation

Specification in the abstractions corresponds to requirements and some logical
design. Now, it is time to develop the solution on a COSEML model that
corresponds to executable code. For that, specifications contained in abstract
elements are used to locate candidate components. In general, more lower-level
abstractions will be implemented by components. A simplistic look into the
implementation problem of the existing abstract tree would suggest representing
only leaf-level abstractions by components. For completeness, no leaf-level
abstraction should be left out also. The issue of the pluralities between the
abstractions and the components such as one-to-one, one-to-many, many-to-one,
or many-to-many is discussed in this section. Also the critical matching problem
of the existing components to the abstractions in the specification has to be dealt
with.

6.2.2.1 Plurality of mapping

The abstract half of a COSEML diagram is desired to be a tree; no lower-level
element should be composed to more than one “container (parent),” at higher
levels. This rule changes, however, at the physical level where a component may
represent more than one abstraction. The opposite is easy to avoid, hence it
should be avoided – no single abstraction should be represented by more than
one component. At this level, an abstraction can be split into two abstractions
that match the components through one-to-one “represents” relations. Figure
6.11 shows the desired and undesired multiplicity alternatives for the represents
relation.

Chapter 6 / Component Oriented Software Engineering 159

prefered allowed

illegalnot prefered

Figure 6.11 Different numbers of abstractions and components per represents
relation

6.2.2.2 Partial representation of abstractions

There may be cases where an abstraction that is higher than leaf-level may be
represented by a component. The meaning of this kind of a mapping is that the
component is implementing all the requirements preserved in the represented
abstraction that is the total requirements in the contained abstractions. However,
some of the contained abstractions may be additionally represented by other
components. This situation is depicted in Figure 6.12. In this case, the
component representing the container abstraction is responsible for implementing
the total requirements for those of the contained abstractions that are not
individually represented by other components.

Component Oriented Software Engineering 160

A

B C D E

1 2

Implements B,C,D Implements E

Figure 6.12 Partial representations of container abstractions

6.2.2.3 Matching abstractions to components

Implementation corresponds to the acquisition and integration of components. It
is not always possible to find a set of components that are defined along the
requirements. Any imperfect patch implies the revisiting of design decisions.
This revision may or may not require code-level development. It is the objective
to avoid code development as much as possible, according to the “Build by
integration” persuasion.

The specifications in the abstract components will be used in locating candidate
components. If there is a perfect match between any abstraction and any
component, the component is placed in the graphical model and a “represents”
link, is formed between the abstraction and the component. In case some of the
abstractions cannot be realized by existing components, the design-level activity
should assume one of the alternatives listed below:
1. Modifying the decomposition in the abstract levels, with the objective to

arrive at the existing components.
2. Modify the component through built-in facilities (without code development)

so that it can be represented by an abstraction.
3. Code-level modification of existing components.
4. Building components from scratch.

This list of alternatives should be tried in the given order. One possible option to
replace the first alternative is to combine existing component into a super-
component that covers the requirements modeled in the abstraction. Even though
this method seems to be naïve so far, this option also brings in code-level
involvement. Actually components at their physical-level are also capable of
composing into super-components which themselves are components and they
should obey the protocol such as exerting interfaces. The simplest of such an
interface would duplicate the services etc. on the contained components and, in
run-time, would act like a relay. However, any such interface does not get
created automatically with today’s technology so combining components

Chapter 6 / Component Oriented Software Engineering 161

immediately requires coding. However, it is another fact that in such simplistic
cases automatic interface generation should not be very difficult to realize today.
The best suggestion is to try to modify the abstract levels rather than components.
An abstraction split into two and the two being inter-connected through a new
connector is generally easier than composing two components into a super-
component.

6.2.2.4 Component Acquisition

Once industries adopt COSE compatible development, domains are expected to
mature and for a majority of projects, all the components will be available off-
the-shelf. Frameworks will further aid the development with graphical drag-and-
drop facilities for importing a component out of a palette of alternatives, into the
design under construction. There will always be cases where a specific
component definition cannot be matched within the currently owned set. Then
the search for a component will be executed which defines the next problem to be
solved in component orientation. There are already component marketplaces
available on the Internet where aided searches can be conducted. Such facilities
will be improved and widened. The fundamental complexity in component
searches especially from outside the developer’s organization is the semantics of
the query. The specification contained in the abstractions need to be represented
in such a formalism that components in the market can be understood. Further,
the components should assert themselves within a similar language so that some
authority can decide a match between what is desired and what is offered, i.e.
what is specified in the abstraction and what is defined for a component.
Meanwhile hybrid development will continue for mixing legacy code with
existing components and even relatively recently developed object-oriented
modules.

Some semantic information added to the syntactic descriptions in the Interface
definitions will support this automated search for components. Some kind of
denotation semantics is already considered in research work for this purpose.
Ontology is commonly offered as a basis to study a domain in an effort to
represent a semantic description.

After the matching of functional specifications to component descriptions,
determination of the efficiency and other quality factors will continue to be
problematic for some time. One way to classify components with respect to
quality parameters has been solved to a considerable extent, in the digital
electronics field by the TTL technology. TTL has been very successful, owing to
its low-granularity basis and the advantages of it existing in the tangible
hardware domain. Different families of components are offered for different
speed and power consumption requirements for TTL. Once configuring the
parameters to classify quality factors and consequently producing different
families of components based on varying price/quality values, the dependability
and testability of components with respect to such quality factors will continue to
be an important issue to resolve.

Component Oriented Software Engineering 162

6.2.2.5 Internet services

We define an Internet service as a component which is a part of a solution, but
resides at a remote host. The messages present in OO or CO platforms will need
to be physical data packages traveling across the Internet and also require a
response message. Once such virtual applications can be effectively created, the
electronic enterprises for software development will be on their feet. Every
organization can offer what they are best at and an application can be integrated
across the Internet without having to connect the components on a single
machine. Locating a required service is another way of looking into component
acquisition, although not every component can be replaced by a remote service.
There may be security and efficiency constraints. There is also another different
aspect of services; a single Internet service is not a part of a system. The same
service may offer its operations to different systems simultaneously. It can work
as a shared resource (component). Also, an Internet service may virtually act as a
part of a system only “part-time.” The important concept of a component being a
structural part of a system is not really observed by the services. They do not
really become an exclusive part of a system, but they only act as an interface
during which a request is processed. Nevertheless, the structural decomposition
of a system definition is not fundamentally affected by a unit being located as an
exclusive part, or as a virtual part residing at a remote end.

6.2.3 Some Guidelines

The observations [Bayar 2001] suggest some methodological rules in the
utilization of COSEML. These rules are mostly intuitive and they are a result of
a limited exposure to academic case studies. Such rules are expected to be
specified further and better after the exploitation of the approach by the industry.
Like the previous development paradigms, COSE also will make more sense
after practical methodologies settle, being both labor-intensive and taking
considerable time. Suggestions and notes listed below outline the fundamentals
of a methodological approach:
• Abstraction Level
• Do not represent connectors among the components inside a package.
• Only packages should be decomposed to lower-level components.
• Only one control abstraction should be allowed per package and nowhere else.
• One Abstraction should not be represented by more than one component.
• Implementation Level
• Components should define an interface per connection.
• One component is allowed to represent more than one abstraction.
• Abstract connectors may require some code writing.
• Complexity in a connector may lead to the introduction of new components.
• Declare outgoing methods in interfaces where it is feasible.
• Try to only represent packages by components (avoid data, function, and

control abstractions).

Chapter 6 / Component Oriented Software Engineering 163

Some creation/modification may be inevitable especially during the early days of
a component domain. Nevertheless, the process should try to refine the model
with respect to the existing components, rather than creating them wherever
necessary. The following additional suggestions are crucial for the efficiency of
a COSE practice:
• Employ Domain Analysis
• Developers should be familiar with the domain model.
• Experience helps with efficiently mapping abstractions to components
• Model Refinement
• Be familiar with previous practice in decomposition.
• For unmatched abstractions, try a bottom-up approach:
• Find components that represent the closest solution for those abstractions
• Declare immediate abstractions above the selected components
• Revise the model to accommodate the modification.
• Information hiding through selective displaying of the model
• Include children abstractions only when more detail needs to be modeled.
• Hide any sub-components if they contain more detail than the level desired to

be observed.

Finally it should be noted that the advantages targeted in selecting this new
approach will be achieved as long as the component orientation understanding is
not ignored. Abusing any kind of orientation is possible. A LISP program can be
constructed as a procedural one rather than the side-effect free functional style, or
a C++ program can be purely procedural avoiding Object Orientation. It is also
easy to bypass the philosophy of this approach, especially if no mature set of
components is to be considered. The suggestions provided in this section can be
adopted and expanded or modified. The development by integration paradigm
should be kept in mind for the total conversion.

6.2.4 Testing and Integration

The classical testing strategy problems are basically retained in component
orientation. However, effective testing of a component has its peculiarities.
Information about how well a specific component has been tested before,
especially under what circumstances, may reduce the testing costs and increase
the effectiveness. Built-in test utilities have been considered also, but the
drawback with this approach is the swelling of a component for an extra load that
would probably not be used once the system is successfully composed.

6. 3 Conclusions
The approach introduced in this chapter supports the Build by Integration
paradigm. Previous and existing approaches have oriented themselves towards
“code writing.” Some techniques to fill the gap between the problem statement
and executable code are presented within this understanding that does not involve
code-level development. Component Orientation can be easily regarded to be in

Component Oriented Software Engineering 164

its infancy state, which brings together some difficulties and shortcomings.
Nevertheless, demonstrating, at least theoretically, the feasibility of switching to
the proposed approach is the goal of this chapter as of today. There is enough
attainment to conduct experimental development. The methods have been
applied in class projects and also in two commercial systems. Those systems
have been developed in OO methodologies already. Therefore, the OO design
models were available before these case studies. Alternative design modeling in
COSEML has been conducted for these existing commercial systems.

There is however a lot to exploit among the proposed techniques, even within
today’s methodologies, in effect. The top-down decomposition facilities
supported through tools provided in Component Oriented Software Engineering
is a desired property for many developers. Some ideas are also applicable to
Object Oriented or traditional models, provided that their usage within the
existing approaches is explained. Once, the decomposition of the model
constructs in abstraction is obtained, it is possible to substitute leaf-level
abstractions with “objects” instead of “components,” where the interfaces also
should be added. The interface concept is an old one and has been interpreted
through various techniques in traditional and especially OO approaches.

If the approach is utilized in an OO platform, for example, code-writing for the
implementation of the specified objects will still be necessary. However, this
inevitable implementation may pay off better when conducted within the
guidance of Component Orientation. The modularity for the objects will be
determined better and a further effective reusability level will be reached.
Actually a conscious reusability will require considerable increase in the
development effort, buying long-range benefits in return. The ultimate reuse
consideration is facilitated today through complying with a component protocol.
Developed within a protocol, the future reuse of the components will further
increase and also its marketability will be captured.

Best practices develop in different fields in due course of time. Component
orientation will benefit from some engineering expertise to be gained. There are
peculiar problems to this new approach that will be interesting to watch as they
yield rules for the engineers. One new problem to cope with is the apparent
deviation from the principle of separation of definition from implementation. An
efficient specification is conducted inevitably considering the implemented
components during decomposition. The separation of definition from solution
may be moved to an earlier activity that is domain analysis.

This problem is also closely related to the accommodation of top-down
specification approach with the bottom-up nature of composition which is the
destiny of the components. A developer could specify abstractions according to
a logical view of the system but the outcome might not be compatible with
available components. Some iteration with respect to different optimization
parameters will result in modifying the logical view or the component set. This
iteration will converge when specifications meet the executable building blocks.

Chapter 6 / Component Oriented Software Engineering 165

Design rules to mature in the field will increase the effectiveness of the process
of development.

Eventually, it will be possible to automatically search and integrate components,
once a specification is made. Before that can happen, we can still benefit from
component orientations, even without utilizing components.

6. 4 Questions
1. How can a requirements engineer know that sufficient detail level has been

reached and therefore know it is time to stop the decomposition?
2. What is the criteria in preferring some code-level development, rather than

strictly utilizing available components “as-is”?
3. Discuss if it is possible to conduct Component Oriented software

development without Domain Orientation.
4. Describe how an OO environment can be used to conduct COSE

development, in terms of the utilization of provided diagrams, such as the 9
diagrams provided in UML. Especially how can the visualization of a
hierarchical decomposition be supported?

5. Assume there are no components available and the code needs to be
developed through defining classes and objects. How can you benefit in such
an OO environment from the ideas set forth in Component Orientation?
Suggest the usage of an OO environment such as UML.

6. Criticize the dependability of built-in testing facilities in components.
7. A component is capable of creating its mirror image in run-time, hence

creating copies of itself. Can the created copies be considered also as
components within the development approach emphasis, given in this
chapter?

8. What kind of measures should be taken to work with components that do not
include “events” in their interfaces due to their protocol?

9. Give an example definition of a problem and its abstract decomposition
where a higher-level abstraction is implemented mostly but not completely
by a component and the remaining requirements in that abstraction are
separately implemented by other components (those other components will
implement some of the children abstractions of this partially implemented
abstraction).

10. For the choice of problems presented below, first conduct a traditional
model, then an OO model, and finally a COSEML model. The traditional
model should include dataflow, entity-relationship, and structure chart
diagrams. The OO model should include the use-case, class, and the
interaction (collaboration or sequence) diagrams. Only the main
decomposition diagram is sufficient for your COSEML model. The problem
choices:
(a) An “ATM machine,” where a user can deposit, withdraw, or transfer
money.

Component Oriented Software Engineering 166

(b) A “student registration system,” where students can register, add/drop
courses, and get approval from their advisor-professors.

You can define extra specifications to the problems, just enough to be able to
build meaningful models. Avoid expanding the problem.

6. 5 References
[Avkaroğulları, 2004] Okan Avkaroğulları, 2004, Representing Design Patterns in

Component Oriented Design, M.S. Thesis, Middle East Technical University.

[Bayar, 2001] Bayar V., 2001, A Component Oriented Process Model, M.S. Thesis,
Middle East Technical University.

[Booch et al. 1999] Booch G., Rumbaugh J., Jacobson I., 1999, The Unified Modeling
Language User Guide, Addison-Wesley.

[Dogru and Altintas, 2000] Dogru A., Altintas I., 2000, “Modeling Language for
Component Oriented Software Engineering: COSEML,” The 5th World Conference
on Integrated Design and Process Technologies, Addison, Texas.

[Dogru and Tanik 2003] Dogru A., Tanik M.M., 2003, “A Process Model for
Component Oriented Software Engineering,” IEEE Software, Vol 20, No. 2,
March/April, pp. 34-41.

[D'Souza, D.F. and Wills 1998] D'Souza, D.F. and Wills, A.C. Objects, Components,
and Frameworks With UML: The Catalysis Approach. Reading, Massachusetts:
Addison-Wesley, 1998.

[Gamma et al. 1995] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides, 1995,
Design Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley,
Reading, Massachusetts, 1995.

[Heineman and Councill, 2001] Heineman G.T., Councill W.T., 2001, Component-
Based Software Engineering, Addison Wesley.

[Krieger and Adler 1998] Krieger D., Adler R.M., “The Emergence of Distributed
Component Platforms”, IEEE Computer, March, 1998.

[Pressman 1997] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 4th
Edition, Mc-Graw Hill, 1997.

[Simon 1969] Herb A. Simon, 1969, Sciences of the Artificial, MIT Press, Cambridge,
Massachusetts.

[Salman 2002] Salman, N. “Extending object oriented metrics to components.” The 6th
World Conference on Integrated Design and Process Technology. Pasadena,
California, June 23-28, 2002.

[Tanik and Chan 1991] Tanik M.M., Chan E.S., 1991, Fundamentals of Computing for
Software Engineers, Van Nostrand Reinhold, New York.

[Tanik and Ertas 1997] Tanik M.M., Ertas A., 1997, “Interdisciplinary Design and
Process Science: A Discourse on Scientific Method for the Integration Age,” Journal
of integrated Design and Process Science, September, Vol. 1 No. 1: pp. 76-94.

Component Oriented Software Engineering 167

Chapter 7
Chapter 7 Traditional Development of a Travel Reservation

System

7. 1 Introduction
This chapter presents a case study for developing a bus reservation system. First,
some project management activity will be presented, followed by the
requirements and the design modeling of the project. These models will contain
a considerable amount of information, but not for the complete system due to
space limitations in this book.

The example system is quite like the airline reservation system, but simpler.
There are different busses with different seat layouts. Trips are identified by
origination and destination locations, and date and time for the take-off. Seats
can be viewed with an indication for their status (i.e. free, reserved, and bought).
A reservation can involve a set of seats for a series of trips for a group of people.
Tickets can also be returned.

The chapter will heavily base its model on the requirements definition. Design
model will be introduced but with less content involved. The transition from the
requirements to design is intended to be represented here. Also example detail
models are included for the design. The information that strictly corresponds to
design rather than requirements is however represented more in the design
sections.

7. 2 Estimation
Before the project can be contracted the developer should be able to guess the
cost and the duration. This activity is among the first and very important tasks.
Some problem definition is also required to arrive at a useful estimation. Since
there is nothing developed yet, only by investigating the problem definitions we
need to arrive at estimations. That is why the “function Point” method is used
first. That requires some domain parameters to be known. These include the
number of inputs, outputs, queries, files, and external interfaces. To arrive at
those numbers, different system functions or entities are considered and their
required numbers are added. Table 7.1 presents the calculation of the domain
parameters. Some of the calculations for the entries in Table 7.1 are explained
below the table.

Chapter 7 / Traditional Development of a Travel Reservation System 168

Table 7.1. Domain parameters for Function Point calculation

Function: reservations trips personnel clients busses total

Inputs 0 4 14 11 2 31

Outputs 3 1 3 8 3 16

Queries 8 11 7 9 4 39

Files 1 2 2 1 2 8

interfaces 3

7.2.1 Reservations

The reservation function includes ticket sale and return operations as well. A trip
is selected and seat locations are determined. Actually, the trip information is not
entered during the reservation operation. Such information should have been
entered before and the reservation operation only selects among existing trips.
This is more a user query than an input. Similarly, we assume all the information
entered for specifying a reservation record are merely selections among
previously entered information. So there are no inputs. The number of user
queries is 6:
1. add a new reservation
2. delete an existing reservation
3. list existing reservations
4. search reservations by name
5. search reservations by destination
6. search reservations by take-off time
7. sale
8. return

Actually, more queries will be conducted to complete a reservation request, such
as requesting a seat-layout display. Such a query belongs to the “trips”
component so we will count it there. A ticket is comprised of one output, while
reports for a returned ticket and an itinerary request each will count as the other
two. So, we have totally three outputs. A database table will be counted as a file.
Although, it is too early to mention a database since it is an implementation issue,
the logical entity corresponding to a table is a practical concept to aid in the
estimation effort. There will probably be a list of reservations saved as a table or
a file. The interfaces however, are more global to the system rather than
belonging to any of the system functions listed in the columns of Table 7.1.
Reservation operations do not have external interfaces. Actually, the reservation
results will be saved in a remote location that is central to all offices. But this

Component Oriented Software Engineering 169

interface is the Internet and it is used for other queries also. There will be a
repeated usage of the same interface specification. Every office will have one of
them. But the repetition does not build on the development complexity since an
office (client) application will be developed once and will be deployed at many
places. The server application, however, will also have the other end of such an
interface. Another interface could be developed for getting the date information
from a calendar application already provided in the run-time environment.

7.2.2 Trips

The trip information needs to be entered probably by the system administrator or
someone who is responsible for setting up the information before the front office
can utilize it. During this entry, the required input items are the origination and
destination locations and times. We can assume there are 4 inputs related with
trip list creation, since each of them can be displayed or accessed individually
upon request. Otherwise, a single trip record could be counted as one input.
Requesting a list of current trips is one query. Such a request may require search
criteria such as the origination/destination locations, origination times, etc. All
different listing options will mean a different query. Let us assume there will be
four different trip-listing queries. Selecting one trip and requesting seat layout for
that trip are also queries. Deleting a trip definition is another query. A list of
trips will constitute a file. Also a list of locations needs to be maintained. This is
another list that requires a listing, a search, delete, and insert operations each of
which can be handled by queries.

7.2.3 Calculating the Function Points

This calculation begins with the weighting of the counts. However, some of the
inputs may be simple, some average, and some complex. Based on that, different
inputs should be weighted differently. The total counts shown in Table 7.1 do
not provide a breakdown with respect to the complexities. Average
complexities will be assumed for most of the counts. Some other inputs have
complex weights: interfaces are complex. The bus related component has
outputs corresponding to the detail of a single bus, and a print of the bus list, are
with average complexity while the seat-layout is a very complex output. Also the
input for defining the layout is complex. The file that stores the layout
information is a complex file. With the information provided in this paragraph, a
break-down in the count complexities can be configured. Hence the count-total
value will be reached using the tabular representation of the calculations in Table
7.2.

Chapter 7 / Traditional Development of a Travel Reservation System 170

Table 7.2 Count Total for the FP calculation

 simple average complex

 count weight count weight count weight totals

inputs 0 3 30 4 1 6 126

outputs 0 4 15 5 1 7 82

inquiries 0 3 38 4 1 6 158

files 0 7 7 10 1 15 85

ext.interfaces 0 5 0 7 3 10 30

 count total: 481

To continue with the FP calculation, the complexity adjustment factors should be
determined and added together. Table 7.3 shows the 14 factors and the grades
assigned to each of them for the problem. The total will be inserted into the
“Function Points” formula:

FP = countTotal x [0.65 + 0.01 x ΣFi]
FP = 481 x [0.65 + 0.01 x 51]
FP = 558

The project is estimated to be of 558 function Points. This value can be
converted to Lines of Code. Assuming a C or Pascal language implementation,
the size can be estimated as 56 KLOC. This is rather a low value for the project.
We can suspect the simplistic look to the problem definition that was reflected as
small numbers for domain parameters in the FP estimation.

7.2.4 Empirical estimations

We will continue with the size estimated above, to explore the time and cost
related estimations. Since the size is known in terms of lines of code (that is 56
KLOC), COCOMO can be utilized. The basic model is used and the problem is
determined as organic. Effort and project duration can be estimated as:

 Effort = 2.4 (56) 1.05
 = 164 person months.
 Duration = 2.5 (164) 0.38
 = 18 months
 Number of persons = 164 / 18
 = 9.11 persons.

Component Oriented Software Engineering 171

To be on the safe side, the rounding of the results was actually used as rounding
to the nearest higher integer (ceiling). Also, the resulting staff size can be
modified as 10 persons.

To estimate the cost of the project, recent project measurements can be referred.
We need to know the average salaries of the personnel and multiply it with the
total effort. Also, the average cost per line of code may be extrapolated to the 56
KLOC value. A round figure such as $10,000 as the monthly cost of a person to
the project will yield the development-related cost of $1,640,000.

Other indications of the above numbers can also be drawn. 56 KLOC to be
developed using 164 person months implies a development speed of about 15
lines per day per person. There is a little uncertainty about the total cost to the
company since the parameters in consideration were only the technical
dimensions of the effort. Anyway, the estimations should be adjusted with
respect to factors specific to the organization.

Table 7.3. Complexity Adjustment Factors

Factor Grade (0..5)
1 Reliable backup and recovery 5

2 Data communications 4

3 Distributed processing 5

4 Critical performance 3

5 Heavily utilized operational environment 2

6 On-line data entry 5

7 Input transactions over multiple screens (on-line) 3

8 Master file updates on-line 5

9 Complex input/output/file/inquiries 2

10 Complex internal processing 1

11 Reusable code design 4

12 Conversion and installation included in design 3

13 Multiple installations for different organizations 4

14 Design for facilitating change and ease of use 5

Total : 51

Chapter 7 / Traditional Development of a Travel Reservation System 172

7. 3 An early prototype for investigating requirements
A throwaway prototype is a good idea in terms of screen designs to show the
customer and get their feedback at early stages of the requirements work. A
short sequence of screens will be presented that represent user interactions for a
reservation operation. Figure 7.1 presents the main menu in this prototype with
the reservation item selected.

Reservation Personnel Clients Help

Reserve
Ticket
Return
Payment

Figure 7.1 Reservation menu item

Upon selecting the reservation option, a dialog box pops up, that handles various
data to be placed on a reservation record. This includes the trip with its
origination and destination locations, take-off time, seat number, and information
required for the organization such as the sales persons identification. Figure 7.2
depicts the initial look of the reservations dialog box.

The idea is to show the customer how the screens will change in response to the
user actions. Other screens called as a result of, for example, selecting a seat on
the layout in Figure 7.2 through a mouse click, should also be included and
demonstrated to the customer.

7. 4 Requirements Analysis
After the investigation of the customer-supplied problem definition, interviews,
and other means for requirements elicitation, some knowledge has already been
accumulated within the developer team. Now, it is time to represent this
knowledge in terms of a requirements model and a specification document. The
first model to build is, the “Dataflow model”. The initial diagram to draw is the

Component Oriented Software Engineering 173

context diagram (level 0). Here, the external entities and the data flows between
them and the system are represented. We are assuming a customer and an
administrator as external entities interacting with the system. Figure 7.3 depicts
the context diagram.

Reservation __ � � X

Client
Name: John Smith
Last visit: 12/30/2002

detail

Trip 1296
From: Dallas
To: New York
Date: 14/4/2003
Time: 10:00 am

Office Dallas #12
personnel: Jane
date: 1/4/2003

1 2
5 6
9 10
13 14
17 18
21 22
25 26
29 30
33 34
37 38
41 42
45 46

3 4
7 8
11 12
15 16
19 20
23 24
27 28
31 32
35 36
39 40
43 44

47 48 49 50

cancel OK

Figure 7.2 Reservation interaction screen

customer

Travel
Reservation

System

administrator

personal info

reservation info

ticket

configuration info

password

Figure 7.3 Level 0 DFD for the travel reservation system

Chapter 7 / Traditional Development of a Travel Reservation System 174

The context diagram will be instrumental in analyzing the external interfaces of
the system. Immediately after the context diagram, an overview diagram will be
drawn, showing the top-level processes inside the system. Figure 7.4 presents
the level 1 DFD for the reservation system. At level 1, the authentication process
compares the administrator’s input with the records to check if the correct
password is entered. Based on the outcome, the system should allow the admin
to continue with using the system. Actually, this outcome cannot be observed in
the diagram since a dataflow diagram does not include control information.
Since the go or no-go command out of this process will enable other functions, it
is considered to be a control flow. The trip management process is responsible
for maintaining the lists of busses, locations, and trips and providing such
information to the reservation process. The personnel management process
maintains the personnel list and provides the ID of the person who does the sale
or reservation. The clients-processing oval in the diagram represents the
operations related with the list of customers, including the sending of the current
client to the reservation process. Finally, the reservation process conducts the
travel reservations, receiving information from various processes and producing a
ticket. Some detail about the initial description may not be observed in the
model presented thus far. For example, the displaying of the seat layout is not
visible yet. It is an option to model an output device such as a video display and
present the layout information as a dataflow sent to this display. Another way
would be to send the layout information directly to the user. The developer for
the case study prefers to model the seat layout processing as an internal task of
the processes so far presented in the initial stages of the DFD diagrams.

personal info

reservation info

ticket

configuration info

password

Level 1 DFD: Travel Reservation System

1
clients

processing

3
personnel

management

5
authenticationadmin password

4
trips

management
2

reservations

person ID

salesperson ID

trip info

driver info

Figure 7.4 Level 1 DFD for the travel reservation system

Component Oriented Software Engineering 175

The DFD analysis continues with different DFDs drawn for the processes defined
in level 1. The reservation and trip management processes seem to be the most
complex of all the processes in Figure 7.4 so they will be explored in upcoming
DFDs. Figure 7.5 depicts the Level 2 diagram showing the internal details of the
reservation process. Take a look at the numbering of the processes; the title for
the DFD in Figure 7.5 will include the process number, as well as its name.

Figure 7.6 presents the level 2 DFD for the trip management process. This
process is responsible for storing the trip records, maintaining the lists for busses
and locations. The drivers are also needed in this process, but are handled in the
personnel process. Therefore, the driver information needs to be retrieved from
the personnel process for associating a driver with a trip.

reservation info

ticket

Level 2 DFD: 2 - reservations

person ID
salesperson ID

trip info

Reservation
record

2.6
trip selection

2.1
make new
reservation

2.2
modify

reservation

2.3
issue ticket

2.4
return ticket

2.5
retrieve

reservation

retrieved
reservation

selected trip

Figure 7.5 Level 2 DFD for the reservations process

Finally a level 3 DFD will be included in this example solution. The most
complex process to pick seems to be the “make new reservation (2.1)” process.
Figure 7.7 depicts its DFD.

7.4.1 Entity Relationship diagrams

This stage will produce a data model that is logical. The main entities in the
system will be identified with their important attributes and relations among
different entities will be specified. So far, reservations, customers, trips, busses,
and location are very good candidates to be modeled as entities. Figure 7.8
displays the Entity Relationship Diagram, (ERD) for the travel reservation
system. This single diagram accounts for all major entities and is the global
model for the whole system.

Chapter 7 / Traditional Development of a Travel Reservation System 176

configuration info

Level 2 DFD: 4 – trips management

trip info

driver info

trip records locations

4.4
prepare trip info
for reservation

4.1
trip list

management

4.3
location list

management

4.2
bus list

management

busses

origin, destination

bus for trip

Figure 7.6 Level 2 DFD for the trips management process

reservation info

Level 3 DFD: 2.1 – make new reservation

person ID

salesperson ID

2.1.2
trip selection

selected trip

Reservation record

2.1.1
process input

destination

date

2.1.3
seat selection

seat
2.1.4

record
reservation seat ID

trip ID

customer ID

Figure 7.7 Level 3 DFD for the make new reservation process

seat

customer reservation

trip location bus

makes

contains

allocatesconnects

Figure 7.8 ERD for the system

Component Oriented Software Engineering 177

7.4.2 Concluding the requirements model

A data dictionary would accompany the DFD and the ERD models, which is not
a very complicated item for the case study. Also, a control specification
including control flow diagrams for state machines could be included which is
not necessary in this example.

7. 5 Design
The requirements model will be used to start. DFDs will be revised and refined.
The refinement may include solution related information. The first categorically
design activity will be the specification of the data structures. Heavily, it is the
relational database. Anyway, this chapter will introduce the first-cut design
approach. It should be noted that a complete design is not contained, nor an
optimally correct one. After the presented models, the designers should revise
and refine the design until they are satisfied.

7.5.1 Data Design

Tables that correspond to the entities in the ERD will be used along with some
extensions. There may be other local data structures required such as lists, tables,
and queues. Figure 7.9 displays the table design that considers some
normalization. Also, some intermediary tables to represent a “many-to-many”
relation are included.

Some information is repeated in different tables. This is not desired in terms of
ideal data modeling. However, for avoiding join operations in favor of
efficiency, some violation of normalization rules can be employed. One example
for such violation is the repetition of the amount filed in reservation and in
payment tables. The same applies for the “seat number” field repeated in both
the seat and the trip seat tables. Whenever a reservation is made, the customer
may want to know the price before buying the ticket. During the customer’s
booking process, the reservation records will be revisited many times and for
each visit, the amount would be accessed through the ticket and the payment
tables. If the frequently accessed amount is provided within the reservation table,
the other two tables are not required for checking the price. Also, at the time of
the purchase, there may be some discount which can be taken into consideration.
In this case, the amounts in the reservation and in the payment tables are different
variables.

Chapter 7 / Traditional Development of a Travel Reservation System 178

customer

CustomerID
Name
Address
Telephone

reservation

ReservationID
ticketID
tripID
amount
PersonnelID

trip

TripID
busID
driverID
origination
destination

location

LocationID
address

bus

BusID
lisencePlate

seat

SeatID
BusID
seatnumber
x
y
width
height

trip seat

TripSeatID
TripID
seatnumber
status

personnel

PersonnelID
Name
Address
Telephone
SSN

cus-res
CustomerID
ReservationID

ticket

ticketID
PaymentID
ReservationID

payment

paymentID
TicketID
Amount
CardID

CreditCard

CardID
CustomerID
NameonCard
Cardnumber
Expiration
address

Figure 7.9 Tables and relations

Let us assume that a customer will be given alternatives once the origin and
destination is specified and there could be connecting busses over different
intermediate locations. This requirement can be implemented by allocating
different reservations per alternative. However, to avoid occupying seats for a
temporary decision process, the alternatives may be saved in the local memory.
A two-dimensional linked-list could be a good structure to achieve this objective.
A list will dedicate an entry per alternative reservation. All the entries in this list
are actually themselves linked-lists of travel segments with durations. Figure
7.10 depicts a graphical representation of the aforementioned data structure.

Component Oriented Software Engineering 179

Origination
Destination

Duration

Origination
Destination

Duration

Origination
Destination

Duration
NIL

Origination
Destination

Duration

Origination
Destination

Duration

Origination
Destination

Duration
NIL

Origination
Destination

Duration

Origination
Destination

Duration

Origination
Destination

Duration
NIL

NIL

head

A reservation alternative
A travel segment

Figure 7.10 Linked lists for the reservation alternatives.

7.5.2 Refining the dataflow diagrams

Existing DFDs can be modified and enhanced with the implementation-related
information, or lower-level DFDs can be drawn that describe the designer’s
solution to the sub-problem. Now that the data structures are more tangible, the
data-flows corresponding to a process can be presented in further detail. Figure
7.11 contains the design-level information for the refinement of the “seat
selection” process (Process 2.1.3) presented in Figure 7.7. Now we discover that
Figure 7.7 needs to be modified: To select a seat, the process requires trip
information. The trip information also contains the bus information that is
required for displaying the seats.

More refinement could be conducted for the presented set of DFDs. After the
completion of the refinements over the DFDs, the design can proceed towards
structure charts.

7.5.3 Structural design

Transform analysis will be conducted to draw structure charts, using the
information in the DFDs. The hierarchical organization of the DFDs will be
observed and the structure chart will be attempted to be drawn in a corresponding
top-down order. Looking at the overview diagram in Figure 7.4, it is possible to
conclude that we need to join the level 2 diagrams in order to have a meaningful

Chapter 7 / Traditional Development of a Travel Reservation System 180

set of processes for separating the input, transform, and output flow boundaries.
Actually, observing the overview diagram more carefully, one can deduct that
there is a hidden “transaction flow” rather than a transform flow in Figure 7.4. A
process standing for the transaction center, however, is missing. The structure
chart can make up for the missing process and can suggest that apart from the
input flow, the boundaries correspond to different action paths corresponding to
reservations, personnel management, and the trip management. Figure 7.12
depicts the first step in drawing the structure chart that utilizes the model in the
overview diagram only.

 Level 4 DFD: 2.1.3 – seat selection

Seat Layout

2.1.3.3
change status2.1.3.2

display layout
seat

2.1.3.1
locate bus

seat ID

trip info

trip seat status

Figure 7.11 Design-level refinement for the seat selection process

travel

reservation
system

input
controller

operation
center

Clients
processing

authentication

reservations

personnel
management

Trips
management

Figure 7.12 Design-level refinement for the seat selection process

Component Oriented Software Engineering 181

Figure 7.5, that explodes the reservation process, can be interpreted as a
transform flow. The input region is decided to contain two processes: trip
selection and retrieve reservation. The only process in the output flow region is
“issue ticket.” The Level 2 diagram for the reservation process is redrawn in
Figure 7.13 to illustrate the separated flow boundaries. In light of the flow
regions, the processes can be organized under the control units that decompose
the reservation responsibilities. To show the continuity of the design process,
Figure 7.12 will be refined in Figure 7.14, with the mentioned reservation related
transform mapping. In order to achieve the following refinement, newly
introduced structure chart modules will be presented in separate diagrams. The
whole structure chart will be presented in the upcoming section, with small
modules that cannot accommodate names due to the limitation in the dimensions
of this page.

reservation info

ticket

Level 2 DFD: 2 - reservations

person ID
salesperson ID

trip info

Reservation
record

2.6
trip selection

2.1
make new
reservation

2.2
modify

reservation

2.3
issue ticket

2.4
return ticket

2.5
retrieve

reservation

retrieved
reservation

selected trip

input

transform

output

Figure 7.13 Flow boundaries in the Level 2 DFD for the reservations process

After applying the rules to construct a structure chart, a designer should consider
modifications. For example, in Figure 7.14, the “reservation output control”
module controls only one module which is “issue ticket.” The control module
can be eliminated and the “issue ticket” module can rise to its level.

The other level-2 diagram was presented for “trip management.” The next
refinement on the structure chart will govern the associated processes under the
trip management module. Required processes are contained in Figure 7.6.
Trying to separate the flow regions, it can be observed that there is a missing
“input region” process. Hence, it is not possible to separate the input flow. The
“configuration information” entering this DFD, is split towards three different
processes without any processing. Perhaps, it is a good idea to revisit the level-2
diagram for trip management. Figure 7.15 introduces a new process to the
modified version of the mentioned DFD, which is “admin interaction” that

Chapter 7 / Traditional Development of a Travel Reservation System 182

processes the input to the trip management DFD. Now, we are ready to draw the
structure chart section corresponding to the “trip management” process.

travel

reservation
system

input
controller

operation
center

Clients
processing

authentication

reservations

personnel
management

Trips
management

reservations
input control

reservation
operations

reservations
output control

trip
selection

retrieve
reservation

make new
reservation

modify
reservation

return
ticket

issue
ticket

Figure 7.14 Structure chart refined for the reservation items.

configuration info
Level 2 DFD: 4 – trips management

trip info

driver info

trip records

locations

4.4
prepare trip

info for
reservation

4.1
trip list

management

4.3
location list

management

4.2
bus list

management

busses

origin, destination

bus for trip

4.5
admin

interaction

trip info

bus info

location info

output

input

transform

Figure 7.15 Modified Level 2 DFD for the trips management process with flow

boundaries

Component Oriented Software Engineering 183

trips

management

input
controller

Transform
management

admin
interaction

trip list
management

prepare trip
info for

reservation

output
controller

bus list
management

location list
management

Figure 7.16 Structure chart section corresponding to trip management

Once again, there are controller-units that only manage one module, which may
make them unnecessary. When all the sections will be split into units as the
system structure chart, such modifications can be considered. The case study
will continue with the definition of the structural sections corresponding to the
dataflow diagrams that have been depicted. We need to create a new reservation
process, and the seat selection processes are the only ones left, which have not
been converted to structure charts. Figure 7.17 depicts the structure chart
corresponding to Figure 7.7 for “make new reservation.”

make new

reservation

input
controller

operations
management

process
input

trip selection

output
controller

seat selection record
reservation

Figure 7.17 Structure chart section corresponding to make new reservation

Finally, Figure 7.18 will display the structure chart for the seat selection process,
where no control blocks are introduced. With the given dataflow model this is as
far as we can go. Figure 18 is a combined structure chart for the current design
refinement level.

Chapter 7

 / Traditional Development of a Travel Reservation System 184

seat

selection

locate bus display
layout

record
status

Figure 7.18 Structure chart section corresponding to seat selection

 / Traditional Development of a Travel Reservation System 185

travel

reservation
system

input
controller

operation
center

Clients
processing

authentication

reservations

personnel
m anagem ent

Trips
m anagem ent

reservations
input control

reservation
operations

reservations
output control

trip
selection

retrieve
reservation

m ake new
reservation

modify
reservation

return
ticket

issue
ticket

input
controller

Transform
m anagem ent

admin
interaction

trip list
m anagement

prepare trip
info for

reservation

output
controller

bus list
managem ent

location list
managem ent

input
controller

operations
management

process
input

trip selection

output
controller

seat selection record
reservation

locate bus display
layout

record
status

Figure 7.19 Structure chart refined for the reservation item

Chapter 7

Component Oriented Software Engineering

Chapter 8
Chapter 8 Object Oriented Development of a Travel

Reservation System

8. 1 Introduction
This chapter presents a case study for developing a “Bus reservation system”.
The example system is quite like the “Airline reservation system”, but simpler.
There are different busses with different seat layouts. Trips are identified by
origination and destination locations, and date and time for the take-off. Seats
can be viewed with an indication for their status (i.e. free, reserved and bought).
A reservation can involve a set of seats for a series of trips for a group of people.
Tickets can also be returned.

The chapter will heavily base its model on the requirements definition. Design
model will be introduced but with less emphasis. The transition from the
requirements to design is intended to be represented here. Also, detailed example
models are included for the process of design. The information that strictly
corresponds to design rather than requirements is, however, represented more in
the design sections.

8. 2 More specifications
The system should be capable of maintaining a customer database. Personal
information will be accompanied with other details to aid the marketing efforts.
Birth-date cards can be mailed to the clients and their travel patterns can be
analyzed to offer deals that are likely to be of interest to some of the customers.
Also, the frequency of their purchases can give clues about the right time to
contact them to get their opinion about any dissatisfying issues. Of course, the
example can easily be grown into detailed levels surpassing those existing in the
commercial applications. Credit card information for example, can extend their
personal information. This should suffice for the customers, for now.

A similar list should be maintained for the personnel. Besides the personal
information, the employment related information is required for any employee.
The list has office personnel and drivers. Their employment dates and salaries
should be part of the record. Depending on sales an office person does or the
amount of trip activities for a driver, monthly salaries can be adjusted.

The trips are important for the application. A trip with its trip number has a lot of
meaning for the travel domain. A trip comes with its number, origination and
destination locations, take-off and arrival dates with times. This statement
suggests that there needs to be lists of locations and trips that should be

Component Oriented Software Engineering 187

conveniently accessed and sometimes modified by the office personnel. Not
required by the customer, the developers can reserve facilities in their
assumptions for future enhancements such as automatically detecting and
recording the arrival or departure of a bus related with a trip so that customers
can query such information through phone or the Internet.

Also, the system should maintain a list of busses. There will be different makes
and types of busses with different seat layouts, all displayed clearly on interactive
screens. If a new bus model arrives, the office personnel should be able to easily
define the information, including the seat layout about the new bus.

Another important concept is reservation. The reservation information is the
main information utilized in the purchase or in the event of the return of a ticket.
Although the reservation information can be implicitly accessed through viewing
the seats on the busses assigned for the trips, the users may want to treat
reservations as important records that can be searched with respect to different
parameters such as the customer name or trip date, etc., which can be listed,
selected, modified, and printed. A reservation links the customers with the seats
in trips.

There will be many offices distributed around the world. Every office should be
able to access reservation information online. A central location is proposed to
keep the main records. For the initial application, the office personnel will carry
out the reservations on their desk computers. A walk-in customer or someone on
the phone will be aided by the personnel. Therefore, we can assume that the
customer is conducting a reservation.

Although, the problem may seem to be easy and well defined at this point. For a
realistic application, so far a very little part of the definition has been expressed.
This much however, is enough to start the limited case study activities. It should
be remembered that possible effort should be spent on defining the problem
before any further development begins. Depending on the problem, part of the
requirements could be enhanced enough to start design while other parts of the
problem are yet being defined through the requirements elicitation activity.

8. 3 Starting with the requirements modeling
We use UML for modeling language. Use case diagrams are suggested to begin
with. If the application is going to be a complex one with different capabilities, a
different use-case diagram can be drawn per capability. The heart of the
application is the reservation capability. Figure 8.1 displays the use-case
diagram for the reservation capability. The only actor in this diagram is the
customer. The customer interacts with the reservation function, purchase, and
return functions. The purchase and return functions also need the reservation
function, at least to locate the reservation to be bought or returned. Any
reservation operations need to select a trip and view the seat status. All the
relations are compulsory. Therefore, the default “uses” relation is utilized
without having to name the arrows. If, for example a return could be conducted

Chapter 8 / Object Oriented Development of a Travel Reservation System 188

without having to consult to the reservation function, the arrow could be named
as “extends.” That would imply an optional reference, where the reservation
function could sometimes be requested.

How detailed the ovals could be is a matter of defining the activities as system
functions. If, for example, viewing the locations can be considered as a system
function and also selecting a trip may need to view the locations, and then in
Figure 8.1, the “trip selection” use-case could connect to an additional use-case
to be named as “view locations” through an “extends” connection.

customer

purchase

return

reservation

view layout

trip selection

«include»

«include»

«extend»

«include»

Figure 8.1 Reservation Capability

A system function is a high-level function immediately within the scope of
system capability. All the system functions must be included in some use-case
diagram. How important this is, is again a decision of the requirements task
force. One strategy we try to avoid here is a hierarchical decomposition of use-
case diagrams. So, for example to show what is going on in a trip selection
activity should not be presented through another use-case diagram that defines
the internals of the “trip selection” use-case. There are approaches though that
allow for at least two levels of use-case diagram hierarchy.

The detailed explanation of how a system function represented by one use-case is
achieved through interaction diagrams. At this point, there is the choice of
breadth-first or depth-first refinement. First, all the use-case diagrams can be
drawn, or the interaction diagrams corresponding to one use-case diagram can be
finished before moving to the next use-case diagram. The next activity in the
case study will be the modeling of the interactions, which are first textually
defined as “scenarios”. Then a collaboration diagram will be presented for the
interaction. The scenario for the “purchase system” function is described below:

Component Oriented Software Engineering 189

Customer is identified

If not existing, customer information is entered

If not existing, a new reservation is made

Reservation is modified

A payment option is selected

Transaction is completed

Ticket is issued

Messages need to represent the actions in the scenario. A message will be
constructed considering its sender and receiver objects. This is the first time in
the case study an object will be explicitly introduced. Actually, actors in the use
case diagrams are also objects that can take place in the interaction diagrams.
Also their class definitions will be included in the class diagrams. The following
paragraphs will define new messages corresponding to the scenario steps, and
objects that will contribute to the interaction diagram.
1. Customer is identified: This action requires the locating of a specific

customer hinting that there should be a list of customers. This list is our first
object candidate. Also, when found, the information about a single customer
can be another good candidate. Any message requires a sender who is the
initiator of the action. The client-server paradigm is a practical guidance
when determining the sender and the receiver of the message. The initiator is
the client, requesting a service. The other object will assume the role of a
server (only for the processing of this message, the same object may act like
a client for other messages). The entity to start the search needs to be
identified; this is the client object for the search operation. In our
application, this object could be an office clerk or a customer. If we assume
the customer as the client, we may end up with the same kind of an object
trying to locate the same kind of an object, which is not a problem. Actually,
the user-interface items appearing on the screen relate to a customer object
that contains the service request in the form of “buttons” or something
similar. Also, the same customer will have information the mentioned search
operation is trying to match. The two objects do not have to be the same
objects, only they are of the same type (class). The operation in the
scenario/step can be further detailed. More than once, messages might do the
job. Also, the search could be carried out with respect to the customer name
or the telephone number. All such decisions are subject to refining the
requirements. More information may need to be polled from the customers
of the project or future users. Figure 8.2 presents the first step in building the
collaboration diagram corresponding to the purchase use-case.

Chapter 8 / Object Oriented Development of a Travel Reservation System 190

 :customer_listlocate customer()

Figure 8.2 Constructing the first message for the “identify customer” action in the

scenario

1. A good way to indicate the search by name is to include the word “name” as

a parameter sent with the message. In that case, the word “name” should
appear in parenthesis. Whereas, the “locate customer” message in Figure
8.1 does not carry any parameter.

2. If information does not exist, customer information is entered. This action is
an example of conditional operations in the collaboration models. The
condition is treated as a guard that allows the transaction of the message.
Guards in UML are written in angled braces before the name of the message.
Actually, the new customer creation and its information entry may take two
messages. They both should be guarded by the same condition. Such an “if”
block can be displayed in a more visual manner through a sequence diagram.
In a collaboration diagram, the guard can be repeated in the related messages
or shown once in the initial message for the conditional group. Figure 8.3
presents the messages related to creating a new customer and entering related
information.

3. If information does not exist, a new reservation is made
4. Reservation is modified: The modification is actually optional. An existing

reservation can just be viewed in a modification window and accepted. If a
new reservation is being made, the modification is really conducted and any
modification needs to be saved. Actually, we do not want to show the details
of a reservation operation since it is represented as a different oval in the use-
case diagram. This collaboration (purchase) is like referring to a next
collaboration (reservation) diagram. Now, it is the collaboration diagrams
acting in a client/server mode. One requests a service from the other.
Although we want to analyze interaction models in isolation, there are cases
where an object participating in a different collaboration diagram provides
the initiation. The initiating object might also participate in the current
collaboration diagram. Especially, if this client object is totally external to
the collaboration, it might be considered to be an “actor” for the current
collaboration without physically being represented as an actor (unless it is
already an actor kind of an object). The purchase operations are using the
reservation operations. Therefore, it is better to converge all reservation

Component Oriented Software Engineering 191

operations into a single request that will be carried out in the reservation use-
case (or the corresponding collaboration). Our collaboration diagram will
generate the request so that an object relating to the reservation operation (to
impersonate an actor) is pertained in the server mode. It would be best to
observe the call to reservations, in the whole collaboration diagram for the
purchase system-function. One point to be noted is that no object is owned
by collaboration diagrams. A specific object can participate in different
diagrams.

5. A payment option is selected
6. Transaction is completed: These steps in the scenario can again be refined

with the definition of the payment types such as cash, check, and credit.
Completing the transaction could be different per payment type and may be
conducted as internal operations for objects corresponding to these payment
types. Figure 8.4 depicts the collaboration logic for the payment operation.
The messages 3.a, 3.b, and 3.c are the first examples of reflexive messages in
the case study. These messages originate and terminate at the same object.

:customer list [not located] 1: new customer ()

user:customer

newcustomer:customer

[not located] 2: fill info ()

Figure 8.3 Creating a new customer and filling it with information

Chapter 8

 / Object Oriented Development of a Travel Reservation System 192

:reservation 1: Select payment type ()

user:customer

:cash

2.b: Fill credit info ()

price

 :credit

:check 2.c: Fill check info ()

3.a: save ()

3.b: save ()

3.c: save ()

2.a: Fill cash info ()

Figure 8.4 Payment scenario

Most of the purchase operation is defined through partial collaboration diagrams
presented in figures 2 through 4. The complete diagram can now be drawn for
the “purchase system”. Figure 8.5 depicts the collaboration diagram. Here, the
messages are re-numbered with respect to the complete collaboration model.
Also, the flow of this case study assumes decision changes. The three different
objects corresponding to different payment types in Figure 8.3 are later decided
unnecessary and a single object “payment” does the job in Figure 8.5.

After the construction of the first collaboration diagram, it may be a good time to
start defining the participating objects in a class diagram. Later the diagram can
be grown with the addition of other classes defining the objects to be used in the
other collaboration diagrams.

Chapter 8

 / Object Oriented Development of a Travel Reservation System 193

:reservation

5: Select payment type ()

:payment
7.b: Fill credit info ()

price

7.c: Fill check info ()

7: save ()

7.a: Fill cash info ()

:customer list
[not located] 2: new customer ()

user:customer
newcustomer:customer

[not located] 3: fill info ()

:ticket

1: locate customer ()
4: find reservation()

6. start payment()

8. issue ticket()

Figure 8.5 Purchase scenario

Chapter 8 / Object Oriented Development of a Travel Reservation System

customercustomer list reservation

payment ticket

1 * * *

1

*

1 1

1

1

Figure 8.6 Initial class diagram

The class diagram in Figure 8.6 does not include any inheritance relation. A
composition is present, indicating that “one” customer list contains many
customer objects. The other relations are simple associations. Names of the
associations are not given because they would not add to the understandability of
the diagram. The pluralities are included such as the ones on the association
between the customer and the reservation classes. This association has a “many-
to-many” relation. To discuss these pluralities, the customer class can be taken
first and the question of “how many reservations a customer can be related to?”
can be answered. Since a customer can have many reservations at the same time,
the plurality at the reservation end is a “*”. Likewise, a single reservation can
correspond to a set of customers, such as in a group travel. This suggests that the
customer end of the relation also has a “*” kind of plurality.

A specific reservation can correspond to only one ticket object. Also, a specific
ticket is for only a single reservation. So the association between the reservation
and the ticket classes is “one-to-one.” A customer can relate to many payments,
if different reservations and corresponding tickets are bought by the same
customer, while one payment can only be conducted by one customer. We also
assume that one payment can only be for a single ticket and a single ticket can
only be paid by a specific payment. These assumptions also indicate some
constraints on the requirements. This problem could be defined in a different
way. For example, it sounds natural to allow a payment to pay for more than one
ticket at a time. Also, a payment could correspond to more than one customer if
this is related to a group reservation. Our example model suggests that even if
the reservation were for a group, only one person can make the payment.

8.3.1 Reservation system-function

The analysis activity continues with another use case presented in Figure 8.1.
This oval was provided as part of modeling the reservation related capability.

Component Oriented Software Engineering 195

Later there will be other use-case diagrams drawn for other capabilities (such as
“trip management”) and their ovals will also be explained by interaction
diagrams. Although some of the reservation services were utilized in the
purchase activities explained above, their internal explanations might have been
missing. Figure 8.7 presents the interaction logic for the activities related to
reservations. It may be easier to feel the flow of operations, first ignoring the
data-flows in the diagram. The numbered messages will indicate the order of the
events.

:trip :trip list

:customer

1: list trips()
trip, bus, res-status

2: select trip()

:bus

3: get res-status()

4: display layout(res-status)

res-status, bus

:reservation list
6: new reservation(trip, seat)

7: update res-status(seat)

5: select seat()

seat

Figure 8.7 Collaboration diagram for the reservation activities

If the initial attempt on the reservation modeling is analyzed, the assumed
scenario can be summarized as:
1. A customer asks for a listing of all trips from the “trip list” object.
2. The customer selects one trip in the list and waits for the information about

the specific trip, the bus assigned to it, and the reservation status for all the
seats for that trip.

3. The trip list object, having a trip selected by the customer, asks for the
reservation status from the specific trip and receives the bus ID and the
reservation status. All the result information is relayed by the “trip list” back
to the customer, also the trip ID.

4. Now, the specific bus assigned to the trip can draw its seat layout. No other
object should assume this internal operation. Meanwhile, the bus cannot
know the reservation status, as it is only responsible for the “trip.”
Therefore, after the selection of the trip and acquiring the reservation status,

Chapter 8 / Object Oriented Development of a Travel Reservation System 196

the customer provides the bus such information to draw its seats with
different colors according to the individual reservation status.

5. The customer can pick a vacant seat and its ID will be returned to the
customer.

6. The customer finalizes the reservation request, by creating a new reservation
record. This operation in turn, should update the reservation status for the
trip.

There are a few points to articulate in this interaction model. The customer
makes a “select trip” request to the “trip list” object and assumes three
parameters to be returned. Also, the “trip list” object plays like an intermediary,
and asks the specific trip to send its reservation status back, knowing that a trip
selection will naturally require such information, although this information is not
necessary to complete the selection operation. So, the “trip list” acts on the
behalf of the customer to do this reservation request and relays the return
parameters (reservation status and bus) to the customer, without any local need
for them. This kind of intermediary functions imposed on objects point to an
option in the approach:
• Either the initiator (actor) assumes all the requests and directs them to the

corresponding object directly, or
• The initiator delegates an object that is central to the kind of request. This

object initiates the actions to complete the request and holds the required
intermediate information.

The above example employs both options by not delegating a central object to
control the reservation related actions. At the same time, it assumes the central
role by itself, keeping the parameters and directing them to other objects. Also,
the “trip list” object assumes some central role. In most cases it may be desirable
to prevent intermediary objects relaying parameters and creating secondary
requests unless these secondary requests are vital for the completion of the
primary service request. But then, care must be taken so that all the
responsibility for conducting the service does not belong to a single object that is
not meant for the service. In other words, when the user as an actor only asks for
a service, it should not do most of the service. This discussion leads us to a
variation in the reservation collaboration, by allocating the control of the message
traffic within a “reservation” object. Figure 8.8 displays the revision in the
“reservation function”.

Component Oriented Software Engineering 197

:trip

:trip list

:customer 2: list trips()
3: select trip()

:bus

 1: start reservation()

5: display layout(res-status)

:reservation list

7: update res-status()
4: get res-status()

6: new reservation()

:reservations

Figure 8.8 Reservation model with a specific control object

8.3.2 Next use case

The “view layout” system function is selected for the next interaction modeling.
Meanwhile, the class diagram was not updated for the reservation use-case.
There are new classes to declare and this task has to be completed. It is better to
update the class diagrams so that the methods used in the interaction diagrams
are declared inside the classes. A class diagram was included already and all
update actions would take too much space to include. The next class diagram
will include the introduced classes and the methods yet waiting to be declared.
This scenario can be summarized in the following statements that correspond to
the collaboration diagram in Figure 8.9.

Initiation comes from the reservations

The bus object first draws the frame and the background

For each seat to be drawn, the status of the single seat is
sed

The bus requests a seat to draw itself, sending it the
ation status

Chapter 8 / Object Oriented Development of a Travel Reservation System 198

:seat

:reservations
2: draw frame()
3: seat status(seat)

 1: view layout(res-status)

4: draw seat(status) :bus
:seat :seat

Figure 8.9 Collaboration Diagram for the view layout system-function

The new aspect of this diagram is a multiple object. The set of seats are
represented with the “seat” object that is drawn as three overlapping object icons.
Although the sequencing logic through all the seats is not specified in the
collaboration diagram, elements of the loop body are represented. The loop
block could be indicated using a comment box.

8.3.3 Return system function

The return operation is similar to the purchase operation. There is a reservation
to be located instead of being created. Then the buy action is replaced by a
return action that may be very similar to the buy action. First the textual
explanation for the return scenario is provided.

1. Customer initiates the return operation: the reservation
list is searched for the previously ticketed reservation

2. the reservation is displayed: payment type is displayed
as at the purchase time

3. reservation is modified: the returned status is recorded

4. trip is updated with the new reservation status

5. payment is done back to the customer

The collaboration diagram in Figure 8.10 graphically models this scenario.

Component Oriented Software Engineering 199

:reservation list

:customer

2: select reservation()
1: show reservations()

:reservation
4: modify()
3: display()

:trip

5: update()

:payment
6: return payment()

8: save()
7: display()

Figure 8.10 Collaboration diagram for the return system-function

8.3.4 List trips system function

The final oval in the use case diagram is the “trips list” use case. The interaction
model again is a textual description of the scenario followed by the collaboration
diagram.

1. Reservation requests a display from the trip list

2. trip list asks for the individual trips to provide summary
information

3. the trip list displays the information for each trip on a
single line

Chapter 8 / Object Oriented Development of a Travel Reservation System 200

:trip list 1: list trips()

3: display line ()
:reservations

:trip :trip :trip

2: summary info ()

Figure 8.11 Collaboration diagram for list trips system-function

8. 4 Next Capability: trip management
Although the problem as represented here is not very complex, it helps in the
organization of the model to have more than one capability. A use-case diagram
will be drawn for this capability as well. The trip’s information needs to be set
and modified by the users or administrators and used by reservation operations.
A list of locations is the key to maintaining trips. Locations as well as departure
and arrival times should be assigned to the trips, beside busses. Management of
the bus list is assumed to be a part of this capability. Figure 8.12 presents a use-
case diagram for tip management.

bus list

maintenance

administrator

trip list
maintenance

Location list
maintenace

«extend»

«extend»

Figure 8.12 Use case diagram for the trip management capability

Component Oriented Software Engineering 201

8.4.1 Bus List Maintenance

Actually, there are similar list management functions for different kinds of lists.
Three such lists are implied in the use case diagram for trip management (Figure
8.12). The modeling for bus list maintenance will provide guidance for the other
lists. Any list will save the records of the list elements, display them on the
screen in the list form, allow adding, deleting, and modifying items. Also
printing the list or an item and the display of a detailed view for an item should
be possible.

The scenario for bus list maintenance should be divided into separate operations
such as add, delete, and modify. Most of those functions will have little detail, if
they are all represented in one interaction model. However, the scenario will have
so many conditional sections and that is not a preferred case.

So many applications include many lists to be managed so a list manager module
can be a good candidate for a pattern. Consistency is important especially in the
user interfaces. If a delete operation is taken for example, first an item may be
sought and displayed before the delete request can be made. Or, the delete
operation may be selected in the beginning and then a search will be conducted
and the located item will be deleted. So, the decision for all the lists is to
whether allow listing/searching in the beginning and select an operation (delete,
modify etc.) after locating an item, or to initially ask for the operation and do the
search for the item. The latter choice may be easier for enforcing access rights
per user, localized at the main menu. The former option may appeal to some
users as being more versatile. The bus list management scenario is listed as
below:

1. If an add operation is requested then

2. a new bus object is created

3. modify operation is started with an empty bus detail screen

4. else:

5. User requests a list or a search function from the bus list

6. the individual bus is located and its detailed information is
displayed

7. the user asks for a modify, delete, or a print operation

8. if “delete,” a confirmation message is displayed and the bus is
deleted

9. if “modify,” the item is displayed in a detail screen and edits are
saved

10. if “print,” then the bus detail screen is printed

Chapter 8 / Object Oriented Development of a Travel Reservation System 202

This scenario can be modeled in two separate interaction diagrams, for the add
operation and for the others. Figure 8.13 depicts a collaboration diagram for the
“add a new bus to the list” scenario. Figure 8.14 presents the collaboration
diagram that accounts for the other functions.

:bus list New bus()

:bus

2: modify ()

user

Figure 8.13 Collaboration diagram for add new bus system function

:bus list 1: search()

:bus

2: display ()

user
3a: modify()
3b: delete()
3c: print()

4: confirm ()

Figure 8.14 Collaboration diagram for the bus list management system functions

8.4.2 Trip list maintenance system function

Among the similar list related functions, the trip list maintenance is probably the
most involved. It is worth providing the scenario and the graphical model for it.
Locations, busses, and drivers are involved. A calendar element is also
necessary. Adding a trip and modifying a trip are similar operations. Apart from
the difference as the initial creation of a new trip or searching for an existing trip,
all the rest of the functions are identical. Also, for the creation of a trip, a trip
number needs to be determined. Only including the modify trip list function will
be sufficient for the chapter: in a commercial docum ent, it is preferred to present

Component Oriented So

Figure 8.16, presents the sequence diagram corresponding to the collaboration
diagram in Figure 8.15. A sequence diagram helps the visualization of the timely
ordering of messages in a better way.

This scenario is first modeled using a collaboration diagram shown in Figure
8.15. Looking at the number of messages between some pairs of objects and
their sequence numbers, one can prefer a sequence diagram for this collaboration.

all the functions. A trip modification sequence including all the possible
information accesses is presented:

:trip list 2: select()
1: list()

:trip

3: modify ()

:user

5: insert origination()
7: insert take-off()
9: insert destination()
11:insert arrival()

14: save ()

:location list

4: select loc()
8: select loc()

:calendar

6: select date()
10: select date()

:driver list

:bus list

12: allocate bus()
()

13: assign driver()
()

1. User requests a listing of the trips

2. user selects one trip

3. modification on the fields of the trip information is conducted

4. origination location is selected from a list of locations

5. take off date and time are entered

6. destination location is selected

7. arrival date and time are entered

8. a bus is assigned to the trip

9. a bus driver is assigned

10. new trip record is saved

Figure 8.15 Collaboration diagram for the modify trip list system function

ftware Engineering 203

 / Object Oriented Development of a Travel Reservation System 204

:trip list

select()

:trip

modify ()

:user
:location list :calendar :driver list:bus list

list()

Select loc()

insert origination()

insert take-off()

select date()

insert destination()

Select loc()

select date()

insert arrival() Allocate bus()

Assign driver()

save()

Figure 8.16 Sequence diagram for the “modify trip list” system function

Chapter 8

Component Oriented Software Engineering 205

The information provided for the trip list is sufficient for the case study. The
process continues with the specification of the next capability.

8. 5 Business automation capability
The business related services are contained in this section. Sales related
functions are left outside of the responsibilities as the reservations capability is
handling such services. Human resources, reporting and accounting abilities are
actually what is meant here. Figure 8.17 depicts the use case diagram for
business automation capability. Here we assume that the reservation function
uses human resources and accounting services. The reservation use case was
included in another use-case diagram before. Actually, it is not part of this
capability, so it may be modeled as an actor.

user payroll
processing

reservation sale list
management

personnel list
management

accounting

Figure 8.17 Business automation capability

Once again, there are lists. Detailed modeling about the personnel list and sale
list management functions will not be included because similar models have been
demonstrated in the previous sections. The reader is reminded again that this is
only for the demonstrative context of this text; a commercial development should
include specification for any aspect, whether or not similar to other aspects.

The sale list is automatically modified when there is a sale or a return operation.
Accounting is interpreted as the ability to analyze money and other payment
related transactions and produce reports. Payroll processing calculates the

Chapter 8 / Object Oriented Development of a Travel Reservation System 206

monthly salaries for the personnel that include a fixed amount plus sale
percentages for tickets.

8.5.1 Payroll processing system function

The payroll processing system function operates per personnel. The fixed
amount for the salary is accessed through the personnel records as well as the
sale percentage for the person. Then a search in the sale list is conducted to find
the total sales this specific person has completed for the period of concern and
percentages for all those sold tickets are added. A periodic payroll report is
generated that shows the different constituents of the monthly pay:

1. A person is selected.

2. Fixed salary is taken.

3. Sale list is searched for the sales done by the person.

4. Sale percentages for every located ticket are added.

5. The payroll report is prepared

:payroll 1: print payroll (person)

:person

2: get salary ()

:user

:sale list

[not finished] 3: next sale (person)

:sale

[not finished] 4: amount()
()

5: add percentage(amount)

Loop: repeat
for the sale list

Figure 8.18 Collaboration diagram for the payroll processing system function

8.5.2 Accounting system function

The output of this function is reports. For any report, a date period is required.
First, the starting and ending dates need to be entered. Then a report type is
selected. To prepare a report, the sales list is polled and, if necessary, the
personnel list: some reports may require detailed sections based on different

Component Oriented Software Engineering 207

personnel. Finally, the gathered information is printed within the format for the
selected report type:

1. Report period is entered by the user

2. Report type is selected

3. If needed, personal information is taken from the personnel

4. For every sale item in the sale list:

5. Required information is retrieved

6. Report information is prepared

7. Report is printed

:accounting
2: set start() 4: set end()

5: select report type()

:person

[required] 6: personal info ()

:user

:sale list

[not finished] 7: next sale (person)

:calendar

1: get date()
3: get date()

8: prepare()
9: print()

Loop: repeat
for the sale list

:report

Figure 8.19 Collaboration diagram for the accounting system function

8. 6 Final capability: client list
Although this is another list related capability, more specific requirements exist
for the client list management. Besides routine maintenance such as
add/delete/modify operations, other facilities are desired to keep in touch with the
clients. One such facility is the tracking of the birthdays of the customers and
mailing birthday cards. In addition, the activity frequency of a customer is
monitored to keep track of new promotions after a long period of missing
contact. Figure 8.20 presents the use case diagram for the “client list
management” capability.

Chapter 8 / Object Oriented Development of a Travel Reservation System 208

user periodic
mailing

client
monitoring

client list
maintenance

Figure 8.20 Use case diagram for the client list management capability

The client list maintenance system function is similar to any other list
management functions and therefore will not be specified for further detail. The
periodic mailing function is responsible for checking the client list to find birth
dates that are coming soon, or clients who have been passive for a long period.
Client monitoring function is responsible for determining the passive clients.

8.6.1 Periodic mailing system function

The user may request a birthday mail function. The list of clients will be
searched for the clients whose birthday falls within the coming week. For those,
a birth-date card will be printed for mail. Another request could initiate mails to
the customers who have not done business for six months or for some other
period that would be set by the client monitoring function. Figure 8.21 displays a
collaboration diagram that corresponds to the periodic mailing scenario:

1. User requests birth-date mail.

2. Beginning and ending dates are calculated.

3. The clients list is traversed for birth-dates within those dates.

4. A card is printed for each client satisfying the dates.

Component Oriented Software Engineering 209

:mail

:clien tlist

2: current week dates()

user

:client

:calendar

[not finished] 3: next client()

4: check birth-date()

:card 1: birthdate mail() 5: print()

Figure 8.21 Collaboration diagram for the periodic mailing system function

8.6.2 Client Monitoring System Function

Whenever a client asks for a service, the system date is recorded as the client’s
last activity. An “aging” value can be changed if a different “passive period” for
the clients is needed. Then a request like in the case of a birth-date mail will
cause letters to be printed for the clients. Figure 8.22 depicts the collaboration
logic for the client monitoring function. This function can be described as:

1. A client conducts a reservation.

2. System date is recorded as the last activity date, in client.

3. Administrator changes the aging value.

:reservations

3: current date()

:customer

:client monitor:calendar

5: update aging()

2: update client()

1: start reservation()

4: update()

administrator: user

Figure 8.22 Collaboration diagram for the client monitoring system function

Chapter 8 / Object Oriented Development of a Travel Reservation System 210

8. 7 Class diagrams
A class diagram was presented before, in Figure 8.6. It is possible to partition the
class diagrams to correspond to individual scenarios, including only the classes
involved in the scenario with their interrelations. It is preferred here to present
classes as the global resource for the whole problem. Also, different relations or
types of classes may be considered for partitioning the class model. If
partitioned, such model allows the repetitive representation of a class in different
diagrams. Figure 8.23 depicts a class diagram accounting for most of the model
introduced so far. Not all of the relations are included. In this class diagram, the
classes are colored for indicating the type of the classes: Table 8.1 lists the class
types and corresponding colors. A reminder: UML does not define colors – they
are utilized in this text for presentation purposes.

Table 8.1. Colors used in Figure 8.23 to indicate the class types

Class Type Color

Base Yellow

List Green

List item Blue

Item Gray

Control Pink

Composed item (component) Purple

Another missing aspect in the class diagram is the class details: apart from the
base classes (List and Person), no class is presenting its attributes or methods.
The classes should be including such information for especially representing the
messages used in the collaboration diagrams. The messages need to be declared
as methods in the classes. Although such details could as well be represented in
the general class diagram, because such an expansion would render the diagram
too large to fit in a book page several class diagrams will be presented each
detailing a partition of the total class set.

One issue to resolve is embedded in Figure 8.23. The base classes include
properties that are inherited, but actually cannot be used in the development. The
“table” attribute in the “list” class needs to be overridden through re-declarations
in the inherited classes. Actually, even in the logical model (let alone the
implementation) these tables are of different types. Other operations declared in
the list class also need to be re-declared in the derived classes. On the methods
end, however, this is less of a problem because the overriding or even
polymorphic declarations of the same methods are well-accepted trends. The

Component Oriented Software Engineering 211

virtual declaration of the “table” in the “list” class is for the logical description of
the inheritance: All list type of classes will have a (database) table, despite being
very different.

client

ticket

List

table

ShowList()
PrintList()
SelectItem()
insert()
Modify()
Delete()

personnel list
1

driver list

bus list

driver
1

trip list

1**

reservation list

1

**

client list

Person
name
address

1

*

*

*

*

*

*1

*1

*
*

bus

reservation

personnel

trip

client monitor

reservations

sale list

mail

cardaccounting

seat

calendar

payroll

location list

payment

1 *

report

searches

1 *

Figure 8.23 General Class Diagram

A class diagram that includes the attribute and method details is provided in
Figure 8.24. This diagram is based on Figure 8.6, the first class diagram that
contained classes related to a reservation scenario. Now that more classes and
system functions are defined, the more classes can be included while declaring
the internals as well.

Chapter 8 / Object Oriented Development of a Travel Reservation System 212

client

fill info()
check birth-date()

payment

fill cash info()
fill credit info()
fill check info()
save()
return payment()
display()

ticket

start payment()
issue ticket()
amount()

trip

get res-status()
update res-status()
update()
summary info()
modify()
save()
insert take-off
insert arrival()
insert origination()
insert destination()

reservations list

new reservation()
show reservations()
select reservation()

reservations

start reservation()

calendar

select date()
current week()
current date()

client list

locate customer()
new customer()
next customer()

clients table

sale list

next sale()

card

print()

mail

birth-date mail()

client monitor

update client()
update aging()

reservation

select payment type()
find reservation()
modify()
display()

report

prepare()
print()

set start()
set end()
select report type()

accounting

Figure 8.24 Class diagram containing reservation related classes with internal

declarations

It should be noted that the class diagrams introduced to represent the internals, do
not include all of the relations defined before; especially pluralities are omitted.
In addition, the virtual functions declared in the “list” class of Figure 8.23 are
replaced by method names more consistent with specific classes. For example,
“new reservation” method is declared in the “reservation list” class rather than
using the “insert” method existing in the “list” class. Since there is very little
chance that different list objects will be used for polymorphic invocations, better
naming is preferred for the methods per specific class. The declarations in Figure
8.23 are now outdated, and they only represent conceptual information as to what
this class stands for. Figure 8.23 requires an update before it is presented in the
requirements report. Figure 8.25 displays the class diagram that includes the
details for the classes that are related to trip operations.

Component Oriented Software Engineering 213

personnel list

trip

get res-status()
update res-status()
update()
summary info()
modify()
save()
insert take-off
insert arrival()
insert origination()
insert destination()

trip list

list trips()
select trip()

seat

draw seat ()
bus list

allocate bus()
new bus()
search()

location list

select loc()

driver list

assign driver()

payroll

print payroll()
addpercentage()

driver

get salary()
personal info()

personnel

display()
display layout()
select seat()
modify()
confirm()
delete()
print()

bus

Figure 8.25 Details for classes involved in trip related functions

8. 8 Final comments on requirements model
The class diagrams were the last graphical models included in the requirements
modeling. If the problem suggests, state chart or activity diagrams could as well
be incorporated and a logical grouping of the classes could be realized by
allocating them in different “packages.” A similar approach will be utilized in
design where “subsystems” (very close relatives of packages) are used to
physically separate the groups of classes/objects.

The order of the activities presented so far is based on a synthetic approach
where first objects were introduced in interaction diagrams. Later commonalities
were drawn to figure out the classes representing the objects. This is a matter of

Chapter 8 / Object Oriented Development of a Travel Reservation System 214

methodology. Different approaches may suggest to start with the most general
classes and refine them towards more specific classes, and finally objects.

8. 9 Design
The approach taken for design can be summarized as loops consisting of
subsystem design, object design, and requirements revision. The subsystem
design is actually a decomposition of the solution into chunks. Object design
introduces new properties and methods to the classes that were introduced in the
requirements model, and adding new classes and objects. Further, the interaction
models are updated to reflect the solution definitions. As a result, the
requirements model is both refined towards implementation related details and
revised with respect to surfacing change needs with developer additions to the
problem definition.

Initial step is to partition the defined classes in subsystems. First separation
comes to mind with respect to the distributed nature of the application: There
will be offices and a special location that holds the database. Further, the classes
that could be placed in the center can be further separated into two subsystems:
one for the resources and another for the reservation related classes. Once the
top-level subsystems are defined, further subsystems can be positioned inside the
former ones. Figure 8.26 depicts the subsystems. It is noticeable that the
subsystems correspond to distributed nodes therefore for this case study it may be
appropriate to present a deployment diagram early. Otherwise, drawing
deployment diagrams usually are left as one of the latest activities.

The deployment diagram presented in Figure 8.27 indicates that the reservation
and the resources packages are contained in the server (center) and the office
package is contained in the office node.

8.9.1 Objects revisited

Previously, objects appeared in the interaction diagrams. Probably these are the
best places to investigate the objects for refinement. The responsibilities are
better viewed in such dynamic modeling diagrams. In design, issues such as
efficiency are also considered. The refinement can correspond to necessary
inclusions for the functionality, or for other aspects such as quality factors. The
birthday card mailing function can be taken as an example. It can be observed
from Figure 8.21 that the corresponding collaboration diagram suggests the “:
mail” objects accessing the “: client list” to receive client records, one at a time.
Now we have access to the subsystem structure, and even to the distributed
allocation of the objects through the deployment diagram. Consequently, it can
be noticed that for each record a request will be issued over the Internet
connection, to a remote site. Surely, this is a costly operation in terms of time.
For increasing the efficiency, we may opt for reading all the records at once and
saving a copy of the clients that satisfy the criteria (those who have birthdays in
the coming week). This will introduce the first item to be defined during design,

Component Oriented Software Engineering 215

for the case study, such as another “client list object” of the same class “client
list.” Then, it is the objects we are concerned with their locations, not necessarily
classes for this issue. Further, the methods need some rework, in order to
implement the new mode of the client list traversal. Figure 8.28 reflects the
necessary changes on the previously drawn collaboration diagram in Figure 8.21.
In addition, user interface objects may accompany the classes that need to display
some information or that require human interaction. After the refinement, new
and modified methods necessitate an update on the class diagrams. Figure 8.29
depicts the classes that need modification because of the mentioned refinement.

«subsystem»
reservation

reservation list

sale list

reservation

ticket

trip list trip location list

payment

«subsystem»
resources

driver list

bus list

driver

bus seat

personnel list personnel

client list client

«subsystem»
office

reservations calendar

accounting report

mail card

client monitor

Figure 8.26 Subsystems

Chapter 8 / Object Oriented Development of a Travel Reservation System 216

«subsystem»
office

«subsystem»
resources

«subsystem»
reservation

* internet 1

office

server

Figure 8.27 The deployment diagram

:mail

:client list

2: current week dates()

:user

:client :calendar

3: send birthdate list(date-begin,
date-end)

birthdate card info

4: check birth-date()

:card
1: birthdate mail()

7: print()

:mail list

5: insert()
6: print list()repeat while

more records
are received

Repeat for
each record

Figure 8.28 Collaboration diagram for the periodic mailing system function

Component Oriented Software Engineering 217

client

fill info()
check birth-date()

client list

locate customer()
new customer()
next customer()
send birthdate list()

clients table

card

print()

mail

birth-date mail()

mail list

insert()
print list()

card info table

Figure 8.29 Class diagram for the modified classes

After cycling through the decomposition (subsystem definitions), object
refinement, and analysis model revision, the set of objects/classes can be tested
for their assumed responsibilities. Actually not included in the UML methods, a
Class Responsibility Collaboration model can help with this. The system
functions will be realized by the dynamic behavior represented in the interaction
diagrams, through responsibilities assigned to the objects. Such responsibilities
can be taken one at a time and a walk through can be conducted to see if the
existing methods can meet the responsibility.

8.9.2 Database interface

It is a good idea to define interface whenever there are different technologies or
chunks of the system having to work together. In the case of databases, however,
the data management is so much coupled to the class varieties that a localized
interface structure to serve the database connection is often not utilized. The idea
should not be categorically ruled out though. For the case study, the common
tendency will be followed and the cooperation with the data base management
system will be regulated through policies of design. For example, any table in
the database should correspond to a class where queries will be modeled by the
methods of the class. This policy finds its way in the example through the “list”
classes. A list represents the same kind of data with a database table: every
element of the list will be stored as a record and the fields (columns) on the table
correspond to the attributes of the element. Here the term element is used for the
list element that should also be represented as an “item” kind of an object. An
item object will hold the value corresponding to the last read record from the
database table (or the record to be written soon). Relations among the classes
can also be implemented by the relations among the tables.

Chapter 8 / Object Oriented Development of a Travel Reservation System 218

The interface inevitably introduced the structural mapping between the object
oriented model and the relational database tables. How can tables represent the
classes that inherit from others, or compose others? These problems happen to
have particular solution patterns, for the base class and for the derived class
tables will be declared. For any object of the derived class, records will be
generated in both of the tables and these records will point to each other through
external keys fields. A similar technique holds for the composition relation: the
container type object will also require a record for the composed object, in the
table corresponding to the composed class. In general, the association kind of
relations in the class diagrams can also be represented as pairs of mutual pointers.

8.9.3 Graphical user interface

Whenever there is interaction between a human user and the system, there will be
Graphical User Interface (GUI) modules, assuming the most widely used
software types and platforms. The GUI classes will undertake most of the
responsibility for a human actor. Sometimes these classes will conduct a kind of
controller task, managing the interaction traffic. In the logical levels of
modeling, such activities can be regarded as access functions for the information
kept inside a class. In design level modeling, such an access function needs to
regard the data to be displayed and/or input, in formats that require graphical
resources on the screen. Practically, windows environment displays information
in message boxes and accepts information in dialog boxes (or forms). We may
need a GUI class for the interaction that in turn may activate further classes
responsible for such display or input screen elements.

Since there are different kinds of users with different interaction expectancies,
the special package for the user kind should be initiated in the beginning, or a
single program will configure its menus and access rights based on the login
information for the user. For example, the administrator will need different
functions for updating the bus list, location list, etc. Whereas the travel agent
(office employee) is interested in reservations, sales, returns, and sometimes the
client update and mail operations.

The screens should be designed and then class structures to implement them can
be constructed. Actually, graphical compiler environments allow a quick
deployment of a series of screens. To achieve such an executable GUI, the
designers need to introduce some classes. At this point, it can be assumed that
the GUI related classes are designed together with the screens. A windows style
interface suggests an opening screen with a menu bar on the top that includes the
names of the individual “pull-down menus.” Figure 8.30 describes the main
menu for the application. A login option is provided, and the menus presented
assume that a travel agent has logged in. The menus change depending on the
user: some menu items disappear and some others are inserted. Actually, the
scene in Figure 8.30 will never be available on the screen; one pull-down-menu
at a time will be activated whereas Figure 8.30 displays them all together as if

Component Oriented Software Engineering 219

they were active in the same time. This is to provide all the main menu
information in one figure.

Reservation Personnel Clients Help

Reserve
Ticket
Return
Payment

List
Print
New
Modify
Delete
Search

List
Print
New
Modify
Delete
Search
Mail

Index
Topic
About

Figure 8.30 The main menu

8. 10 Coding
So far, models have been used to specify and understand what and how to build.
It is time to convert that information to code and develop the required system.
C++ is selected as the implementation language for the case study. First step is
to utilize the class descriptions. The information included in the class models can
be converted to directly corresponding code segments. However, this is not
enough to completely code a class. More need to be added. This is valid
especially for the body content for the methods. If the previous specification
included comments or some textual description of how the code should proceed
for the functionality, the programmers have a very useful guide.

The recently displayed class “client” can be the first to demonstrate its code. The
client inherits from class “person.” To understand the client fully, it is better to
view the code for both of the classes.

class person {
 string name;
 string address;
 string getname();
 string getaddress();
void setname(string name-p);
void setaddress();
};

Chapter 8 / Object Oriented Development of a Travel Reservation System 220

class client: person {
 void fill_info();
 int check_birth-date();
};

This code only contains what was provided in the design model. More work is
needed. The following code segment defines the internals of some of the
methods declared above.

string person::getname() {
 return name;
};

void person::setname(string name-p) {
 name = name-p;
};

There exist certain methods that are more involved than the simple get/set
operations. If the fill-info method for the client class is considered, the potential
need for a GUI class may be noticed. Displaying a dialog box for the user to
enter the information is a widely applied way of implementing this kind of an
action. Then to continue with the coding example, we must assume the presence
of such GUI related classes together with some variables for accessing those new
classes. Let us define the client class again with some additions and continue
with its methods:

class client: person {
 f* fill_message-box;
 void fill_info();
 int check_birth-date();
};

void client::fill_info() {
 f = new(fill_message-box);
 f ->.show(self); // the dialog box will fill the attributes of the client object
};

Component Oriented Software Engineering 221

Chapter 9
Chapter 9 Component Oriented Development of a Travel

Reservation System

9. 1 Introduction
For an effective component oriented development, a domain for the concepts and
the component set should be mature. The bus travel reservation domain is not
available to us and will be assumed to be present, during the presentation of the
development process. The early activity is the logical modeling that could be
independent from existing components despite the fact that this independence
hinders the development efficiency. There could be two major paths in
demonstrating such an approach depending on the utilization of domain
orientation or not. The case study will present a slight taste of a related domain
and continue with CO development where some information is implicitly taken
from the domain model.

9. 2 The Domain
No matter how formally defined, the existence of a bus travel reservation field
for software development is intuitive. There must be some expertise, some
requirements or design work already conducted, and some software pieces
developed before. Existence of geographical location modeling such as cities,
their coordinates etc. can be assumed. Trips connecting locations for some
date/time and containing seat information regarding the free/reserved/sold kind
of reservation status should also be in the picture. Such speculative thinking
about what may be available will affect even the early decisions in partitioning
the logical model. Figure 9.1 presents the context of the assumed domain.

Basic entities are locations, busses, trips, clients, personnel, and perhaps facilities
such as buildings. On the procedural side, there should be the reservation
operation as the most important one, maintenance of the lists of busses, locations,
clients, personnel etc. Although the architecture should not be involved in the
logical modeling (closer to requirements than design), we might want to
articulate on this dimension since component orientation considers structure as
the fundamental modeling dimension. The early architecture considerations
could relate to top-level entities as well as components at the bottom of the
abstraction levels. If we start thinking in lines of “what existing components
could be present?” then it is the bottom. Alternatively, we may start
decomposing the system definition with respect to logical entities or physical
constraints such as:
• Parts of the software that will reside in the front offices,

Chapter 9 / Component Oriented Development of a Travel Reservation System 222

• Distributed, Mobile sub-systems, etc.

A function oriented start could as well be considered top-down: thinking about
for example, the reservation operation, the decomposition could start at the outset
with functional or data oriented criteria.

In an encompassing domain model, different alternatives should be supported
with architectural, logical, and structural elements. The following sections
contain such elements as samples.

A
bs

tra
ct

io
n

Bus
travel

travel

Air
travel

Sea
travel

e-payment Human
resources

Office
automation

Figure 9.1. The bus travel domain context

9.2.1 Domain Dictionary

This structure is a blackboard resource. It can be built in parallel with all the
other model constituents. However, presentation-wise it is more convenient to
locate the terminology in the beginning. Some kind of semantic net will help in
the utilization of the dictionary: Navigating across the terminology with respect
to relations that bind different terms is a useful approach for understanding the
foundations. The medical terminology dictionaries for example, have found their
ways into the medical field, in such semantic structures and there are quite a
number of matured application examples. A category of terms relates to organs.
From any organ, one can follow the “diseases” link to arrive at possible diseases
related to this specific organ. A disease may be linked to treatments, as well as
medicine. This chapter contains the case study for bus travel domain to support
the rest of the book therefore a simple and hypothetic example will be
constructed for the domain of our interest. The small set of terminology is listed

Component Oriented Software Engineering 223

below to take part in the semantic net representation of the dictionary that may be
in the form of an entity-relationship model represented in the UML class diagram
syntax:
• bus
• date
• location
• seat
• trip

Additional structures can support the utilization of the dictionary. Table 9.1 is an
example to such structures where a data dictionary format is followed. Figure
9.2 presents the entity-relationship model for the domain dictionary.

Table 9.1 Domain Data Dictionary

entity explanation relates with context format

bus trip, seat sub-trip

date trip elementary

location trip elementary

seat bus, seat sub-trip

trip bus,
location, trip

ticketing

trip bus

date

location

seat

combines

is assigned

containsis on a

Figure 9.2 The partial domain relational dictionary model

Chapter 9 / Component Oriented Development of a Travel Reservation System 224

In contrast to the limited set presented here, a domain model should be as much
covering as possible. What differentiates these models from being specific to the
early modeling of a specific project (rather than a domain model) is that domain
models should be generic and should support a variety of applications, and
further, a variety of approaches for the development of those applications.

9.2.2 Design Patterns

Intermediate-level knowledge for the domain repository can be demonstrated by
some Design Patterns (DPs) in this section. A pattern can be strictly abstract, as
the definition of a DP suggests. Also allowed in the COSE approach are the
instantiated versions of DPs, which actually become super components after
instantiation. A generic collaboration among a few objects can represent a DP.

Two different design patterns will be demonstrated to represent a distributed and
a central control in the collaboration of abstract components for conducting the
reservation system-function. In central control, a dedicated object assumes the
arbitration for the message traffic. The initiating request and the external
interactions address this component, which, in return, manages the message
transactions among the “worker” objects. Figures 3 and 4 display the central and
distributed control-type collaborations, respectively, for the reservation
operation.

reservation
customer

bus

trips
2: select trip

3: select seat

4: record reservation

1: request
reservation

Figure 9.3 The reservation design pattern with central-control

Component Oriented Software Engineering 225

reservation
customer

bus

trips

2: select seat

3: record reservation

1: select trip

Figure 9.4 The reservation design pattern with distributed-control

There is so much that could be part of the domain model. High-level concepts
could be offered with their inter-relations. Architectural descriptions are another
aspect of a domain model where alternatives for the complete or partial solutions
can be viewed and adopted. An example high-level architecture is presented in
Figure 9.5.

Central
Server Sales office

ticketing

accounting

personnel clients

trips

reservations

* internet 1

Figure 9.5 A distributed architecture for bus reservation systems

DPs were incorporated as intermediate granularity solution parts in this section.
Finally, a set of components can be part of the domain environment to support

Chapter 9 / Component Oriented Development of a Travel Reservation System 226

the integration of the final product. A set of hypothetical components is
presented in Table 9.2.

Table 9.2 Components for the Bus Travel Domain

reservation reservations trip trips bus busses

client clients employee employees ticket sale

accounting credit-card cash cash-
register

shopping-
cart

mail

e-mail reports drivers calendar appointment groups

The rest of the case study makes use of the concepts introduced in the domain
environment. Utilization of the domain model is not mentioned explicitly but the
reader will recognize similar concepts, patterns, or components.

9. 3 A Bus Reservation System
This section presents a case study that presents the modeling of a reservation
system for bus travel. The system allows customers to select a destination, time,
and seats for the trip. Trips are important concepts, like flight-numbers in air
travel domain. Origin and destination as well as the time and date for the travel
define a trip in this case study. Further, a specific bus has to be assigned to each
trip and seats will be offered for selection on a graphical display that has to be
different per bus model. A customer should be allowed to reserve, buy, and
return a ticket.

So far, very little has been defined but still developers have a lead to try their
initial decomposition. Even with this early start the separation of units should go
parallel with the considerations about the chances that any unit defined in the
decomposition should better correspond to a component. Even with expected
very large granularities, the top-level abstractions should be confined with
contexts to match components. It is more unlikely to locate a component for an
abstraction this high-level; one should expect to correlate lower-level and hence
smaller “requirements modules” to components easier. Nevertheless, it is
assumed that this practical criterion should be in mind rather than logical criteria
while identifying the players in the decomposition.

It would be very efficient to run into existing components to represent higher-
level abstractions. Knowledge of the developers about the available component
spectrum is a key asset for effective decomposition activity. Those less
experienced or knowledgeable would be advised to ask at any refinement step,
“what kind of decomposition yields abstractions that has better chances to match
existing components.” This is even if there is no available match. It is assumed

Component Oriented Software Engineering 227

that this approach may increase the chances in the successive decomposition for
further sub components. Another view to this judgment is to consider being a
component developer and decide what could define a general purpose component
that others may have a chance to use, and also can be partitioned out of our
requirements space. The generality of a component is very high if it can be used
in any domain. If such a generic component will not work, then a more domain
specific one should be imagined.

The case study progresses with the definition of the first-level decomposition to
yield the sub-systems as:
• Customer
• Reservation
• Office
• The Bus fleet.

At this highest level partitioning if it is likely to locate components, they would
be of general and large-grained kinds that would probably require considerable
tailoring.

Initial decomposition is illustrated in Figure 9.6 corresponding to the items
determined and listed above. The immediate next step after any decomposition is
the definition of connectors. If any abstract component would require
communications with others, the communication channels are defined and
available in the forms of components. In Figure 9.6, the office is connected to
every package; the office personnel will at least need to change the configuration
of the system. The reservation is assumed to require the trip information and the
seat layouts from the busses. That is why connectors are drawn between the
reservation and the bus packages.

Office Customer Reservation Bus fleet

Bus Reservation System

Figure 9.6 First level decomposition for the Bus Reservation System

Chapter 9 / Component Oriented Development of a Travel Reservation System 228

The case study continues with further decomposition and reviewing the current
specification. Packages defined in the initial decomposition step will be further
divided. The Office package declares a data abstraction (personnel list). A
specification does not have to be complete to provide useful feedback to the
developers. The partial specification that is about the office will be left like this
for now: currently only one abstraction stands for the office abstraction. In such
a situation, there is no need to have two abstractions. Only one would do the
representation. Anyway, let us continue the refinement with other sub-systems.
By the way, a sub-system is one of the highest-level components of a system.
Reservation package maintains lists for locations (origination and destination for
trips), trips, and reservation records. Sale, return, and reservation operations all
require reservation records. Actually, even if sold a ticket is still said to
correspond to a reservation in this domain contrary to the immediate feeling that
a reservation becomes obsolete once a ticket is bought, ticket information is valid
rather than reservation. On the Bus Fleet package side a list of busses should be
maintained where every bus is capable of drawing its own seat layout. Further,
somewhere there should be the capability to save the assignment information of a
driver to a bus.

The modularity principles set forth even before OO modeling, are universal.
Another important concept a component developer and consequently, a CO
developer should keep in mind is encapsulation. With such consciousness, the
decomposition would naturally determine modules that are both cohesive,
thereby readily wrapping related items together.

In this case study, the reservation package should save the seat status information
for any trip. Since the reservation concept is a bundling of the origin,
destination, date, time, and seat number, all this information should be accessible
from a reservation record. Starting with reservation point of view, one might
suggest then, all this information should be modeled as sub-components, or
attributes of a reservation entity. Now the coupling principle would imply a
similar avenue because if all the required pieces of information are encapsulated,
there will not be a need for communications between a reservation component
and others that carry such information: all are contained locally. On the other
hand, the idea of structuring such a big package is against the divide-and-conquer
understanding. If this works, a big part of the problem will be resolved but there
are little chances that this big granularity component will work exactly as the
specific problem requires. The developers will try to match a big component as
such and if it does not work, continue the decomposition so that smaller-grained
components may be connected according to the specific needs. Further, it may
be a single sub-component such as a “seat” that is offered in versions through
different components: if the incompatibility of the large-grained “reservations
component” is due to the differences in the “seat” requirements, selecting the
fittest “seta component” may be the suitable solution. Let us take another
component for our modularity analysis that is the bus. Who will draw the seat
layout is a good question to guide the modularity here. The drawing should exert

Component Oriented Software Engineering 229

different colors for the reservation status (free/reserved/sold) so that it can be
related with the “reservation” item. On the other hand, “guarded variables”
principle indicates that it should be the only methods in the bus object that access
the seats in a bus – no other entity than the bus should be allowed to draw the
interior of its self. At the same time, it is the duty of a bus to draw its layout.
Although drawing depends on the reservation status, the bus utilizes this
information while painting a seat layout.

The case study moves towards decomposition, trying to observe the
considerations discussed in the preceding paragraphs. Figure 9.7 displays the
subs-systems and their initial decomposition. Here, reservation is a major
component that contains a data abstraction, which records reservation items with
other data abstractions to maintain the lists of trips and locations. The ticketing
process at the office is modeled as a function abstraction inside the reservations
package. On the other hand, it is unlikely that different bus types and models
would be part of such a reservation package. Although we might want those two
entities to be closer for reducing coupling, we may be disturbing cohesion. The
bus fleet is modeled as a separate entity that contains a collection of busses and
the “drawLayout” functional abstraction. Considering the specific mentioning of
the drawing of the seat layout and knowing the importance of this action for the
domain, a specific abstraction is dedicated for layout drawing.

Of course, it would be better to have more defined before the starting of the
decomposition. This chapter gave a very brief description to enable the
presentation of the approach as early as possible. The details are explained as the
decomposition progresses. Actually, it is also possible to continue requirements
gathering with fast prototyping tools that would allow the drawing of the
decomposition while the requirements are being acquired and analyzed.

At this time, the office contains only one abstraction that is the personnel data
abstraction. We could opt for representing either the package or the data
abstraction under the system but it is obvious that office will have more
components later. Further, we want to indicate that among the components of the
office, personnel structures are an important issue to represent. All decisions
made so far assume that a good set of corresponding components will be located.

The higher-level main building blocks have been defined, so far, in a static
structure. It may be a good time to stop and see if the specification complies
with the requirements. Further, any investigation at the early stages is valuable
because discovering errors now, is very important to make a better start. Besides,
it is the suggestion of COSE to define connections when a partition is made. The
connectors will help in enacting scenarios and hence tracing the functional
requirements through the bundled messages. For this kind of an articulation, a
dynamic model is required. Collaboration analysis, as defined in UML will be
applied in the following sections. An example system function will be selected
and dynamic model analysis will be conducted on it. The reservation operation

Chapter 9 / Component Oriented Development of a Travel Reservation System 230

seems to be the most involved, it will be traced using collaboration models in
both logical and component (presented in the next section) levels.

reservation

reservations

bus fleet

trips locations ticketing buses drawLayout

office

personnel

customer

clients mailing

accounting

transactions accounting

Figure 9.7 Decomposition after the second step

The logical level collaboration model includes the abstractions and messages that
were not declared yet. The connectors have not been declared yet. Neither have
been any messages. Perhaps it is time for experimenting with a set of new
messages in an effort to enact the system function. With the given set of
abstractions, if different message insertions cannot solve the problem, it is worth
reconsidering the decomposition (set of involved abstractions). Figure 9.8
presents the logical-level collaboration diagram for the reservation operation.
Actually displaying connections internal to a package is optional and especially
not encouraged in a greater picture. Since our focus is within the context of the
reservations package, we need them for understandability. The reader is
reminded of the fact that selective displaying of any declared elements including
connectors and messages is suggested for various views of the same model.

The objective of this case study is not a complete specification of the bus travel
reservation system. Such a model could easily grow out of the limits for a
chapter. For that reason, we will leave the refinement on the reservation scenario
and continue with a different category of development that is the inclusion of
components. After the components are identified, it will also be possible to
demonstrate the above presented collaboration through physical level modeling –
a run time collaboration view that includes messages among the components and
their interfaces.

Component Oriented Software Engineering 231

ticketing

1: do reservation

trips

drawLayout

transactions

2: show trips

3: select trip

reservations

4: draw layout

7: [sale] Record new sale
6: new reservation

5: select seat

Figure 9.8 Logical-level collaboration model for the reservation operation

9. 4 Implementation by Components
 It is assumed in the initial decomposition attempt for this case study that there
exists components with names resembling the packages introduced before in
Figures 6 and 7. With this optimistic expectation on components, it is further
assumed that there are interfaces owned by components per connection. Finally,
messages declared in the logical collaboration diagram presented in Figure 9.8
are also declared in the interfaces of these available components. Figure 9.9
depicts the components that correspond to the specification done so far.

A more realistic development would definitely confront many problems. Rather
than the simplistic case assumed above, there might be many levels of
decomposition and, even then, so many abstractions may not be satisfied with the
available component set. Although it will not be possible to fit a realistic
development here, some more complexity is not difficult to include in the case
study. We may pick the “office” package for example, and further refine it to
include sub components. Later development scenario in this chapter includes
more entities inside the office (as shown in Figure 9.12). By the way, currently,
an independent accounting package is also included inside the office later.

Chapter 9 / Component Oriented Development of a Travel Reservation System 232

Figure 9.9 introduces the components for the first time, in the case study. They
declare interfaces (per connection) with specific names to relate with the
connection. Such assumed naming and interface structure is for a smooth
presentation of the case study. It is not difficult to figure out that reality may be
very different; so much refinement may be required to make the components fit
to the need. Details of the interfaces introduced in Figure 9.9 are presented in
Figure 9.12. These interfaces declare “request methods” as well as “service
methods.” A message is represented as a directed connection between a
requesting and a serving pair of methods. The origination of the message
optionally can be from the component – without indicating where exactly in the
component the call is initiated. Figures 10, 11, and 12 include real messages at
component-level. These messages can be numbered if collaboration information
is also being presented. Of course, the overall model corresponds to all system
functions hence all possible collaboration models. We prefer representing
collaboration on a separate diagram, still better on a selected set of items rather
than the whole decomposition. Names of the messages are the same as the
method names at the end of the message arrows; that is the serving methods.

The issue of excluding messages or connections internal to a package has been
discussed before. Here, the similar issue is also reflected on a component rather
than a package. In a context where the model is supposed to visualize the
connection of the components, an intra-component message cannot be thought of
representation. However, if a collaboration is being studied, to follow the
sequence of events in order to trace a scenario, the developers might want to see
all events – messages between component pairs and also messages originating
and terminating on the same component. The so- called reflexive messages
indicate an action taken by a component mostly as a result of receiving another
message. Figure 9.9, presenting a collaboration view includes reflexive
messages while Figure 9.12, representing the overall composition hides them.

For any view, any message that is actually between the included decomposition
of a component has to be represented as a reflexive message, if the
decomposition is hidden. If the component displays further sub-components then
messages can be shown to leave a sub-component (or its interface) and arrive at
another sub-component (or its interface). The reflexive messages shown in
Figure 9.10 are:
• show trips,
• select trip, and
• select seat.

If the reservations component represents the internal entities of the reservation
abstraction, this is the only way. If the sub-components of the reservation
abstraction were also represented by separate components, then some of those
messages could as well be represented non-reflexive. The show trips message
would not be a reflexive message if ticketing function and trips data abstractions
were implemented through independent components. None of these messages

Component Oriented Software Engineering 233

crosses the boundary of the reservation component and this can be visualized
easily in Figure 9.10.

Office Customer

Reservation Bus fleet

Accounting

office

Office-Ires

Office-Iclien

reservations

Res-Ibus

Res-Iaccnt

Res-Iclients

Res-Ioffice

clients

cli-Ires

cli-Ioffice

cli-Iacct

bus

Bus-Ires

Bus-Ioffice

accounting

Acc-Ires

Acc-Ioffice

Figure 9.9 Components corresponding to abstractions

It is also possible to draw a component-only version of the model shown in
Figure 9.12 will be useful for information hiding during the composition activity:
once the abstractions are determined in the decomposition and mapped to the
components, we can focus on the components and how they compose to form the
executable system.

Bus-Ires

draw layout

 Res-Iacc

req rec new sale

Req layout

Res-Ibus

rec new sale

Acc-Ires

bus reservationsaccounting

5 3

1: show trips
2: select trip
4: select seat

Figure 9.10 Component-level collaboration diagram for the reservation operation

Chapter 9 / Component Oriented Development of a Travel Reservation System 234

The case study is about finished as far as reaching the lowest-level specifications.
Interfaces and their connections are the lowest-level entities. There may be other
work to refine the design. Starting with the next section some possible
refinement to the initial model is being investigated. The problem has not been
represented anywhere close to a complete specification but a taste of different
kinds of development is contained. Selective representation of the defined units
has been illustrated in different figures for collaboration analyses and also for
limited abstraction level views for higher and lower levels.

Figure 9.10 contains some reflexive messages that originate and terminate at a
component, rather than interfaces. This is fine but also it hints that there could be
a more specific model for better understandability, better specification, or better
correspondence to the reality. Actually, origination of a message is of secondary
importance, but destination is of more. Not showing the originations means that
activities are handled within the component without having to interact with the
environment. In this example, the activities indeed involve the customer. It may
be better to provide an interface for the customer, specifically of a Graphical
User Interface (GUI) kind. Originators of the messages on a GUI would
naturally be external “human” kind of entities. This is another place where a
Use-Case element namely an actor can be imported from the UML graphics.
Figure 9.11 displays the refined alternative for the reservations component
already shown in Figure 9.10, with the added GUI interface and with the
modified collaboration. Since only the modified parts are selected, destinations
of some messages cannot be represented in this diagram, which are drawn as
round interface ports.

user

1
2
4

 Res-Iacc

req rec new sale

Req layout

Res-Ibus

reservations

5 3
GUI

Show trips
Select trip
Select seat

Figure 9.11 Refined reservations component in the same collaboration

No matter how crowded, it is usually desired that the complete picture be present
some place, at some time. Usually, the developers paste sheets on a wall and

Component Oriented Software Engineering 235

draw connections across the sheets, for even various structured or Object-
Oriented models. The inclusive model for the information supplied so far is
represented in Figure 9.12. When the development is converging towards the
complete system, this figure can easily get over crowded.

Documentation is a very important issue in any kind of development. Standards
set forth formats for requirements, design or other documents. Such documents
contain mainly text but they now heavily depend on the graphical models. To fit
different graphics into documents page boundaries, extra measures are needed.
Hierarchical organization of a model and representing a portion of the hierarchy
in one page of course helps. Even if it is possible to decompose the model
format, there will be problems at least for connectors that cross the boundaries
for such portions (or pages corresponding to such model sections). A picture
distributed across pages can be linked with connectors. The connectors will
discontinue at the page boundaries exactly at the same location a special icon can
be drawn to act like a terminal that connects to a matching terminal on a different
page.

9. 5 Scenario Changed
So far, a small example has been demonstrated displaying a history, which
records, no surprises. Following the experience gained through decades of
evolutionary processes, we should anticipate some change. In the case study this
change will occur in the development related stage (that could as well have
happened in the requirements). In this section, an alternative (especially further
detailed) decomposition of a segment in the previous model will be investigated;
the decomposition will not match the available components. Thus, consequently
it will be revised. As can be seen in Figure 9.13, the bus fleet package is
decomposed in more detail where finally the developers expect to find
components (busses, b1, seats, seat, and b1-reg) available.

The busses component is a collection data structure, especially adapted to hold a
list of busses. Through this component, a new bus can be created, existing
busses can be deleted or selected for modification and it is possible to view and
print the list of busses. The b1 component is to represent a “b1” brand of a bus.
The b1 component actually represents the Bus-b1 package, which also is
represented by “seats” and the “seat” components. The meaning of this
compound represents relation is as follows: All the requirements related with the
Bus-b1 package except for those represented by “seats” and “seat” components,
will be represented by the “b1” component.

Chapter 9 / Component Oriented Development of a Travel Reservation System 236

Office Customer Reservation Bus fleet

Bus Reservation System

reservations trips locations

ticketing

buses drawLayout personnel clients mailingaccounting

transactions accounting

office

Office-Ires

Office-Iclien

reservations

Res-Ibus

Res-Iaccnt

Res-Iclients

Res-Ioffice

clients

cli-Ires

cli-Ioffice

cli-Iacct

bus

Bus-Ires

Bus-Ioffice

accounting

Acc-Ires

Acc-Ioffice

Bus-Ires

draw layout
Req layout

Res-IbusAcc-Ioffice

Off-Iclien

Off-Ires Cli-Ires

Cli-Ioffice

Cli-Iacct

Res-Ioffice

Res-Iclients

Bus-Ioffice Res-Iacc

Req-rec-new-sale
Req-new-sale

Acc-Ires

Figure 9.12 Complete model for the specification done so far

Component Oriented Software Engineering 237

Bus fleet

buses drawLayout

bus
collection Bus-b1 Bus-b2

mechanical registration seat layout

seat
seat

collection

seats seat b1 busses b1-reg

Figure 9.13 Alternative decomposition of the bus fleet package.

According to the challenging new scenario, the set of components that are
expected to exist are found to be non-existent. Instead, a different set is found to
be available:
• b1-list,
• b1-draw,
• registration.

The b1-list component is capable of replacing the “busses” and the “b1”
components together. The b1-draw component is also a specific component for
the b1 brand busses and is responsible for any visualizing functions; it
accommodates all the features represented in the “seats” and the “seat”
components, together. It can also draw the external view of this particular
vehicle, which can be used in animation pictures; but this later ability is not of
our concern. Hence, this component may be more complex and expensive than
what we need but this additional overhead is acceptable when compared to the

Chapter 9 / Component Oriented Development of a Travel Reservation System 238

cost and risks of developing from scratch. Finally, there seems to be no
component developed to address the registration related information for this
specific bus, rather the generic registration component can assume the mission
for any kind of a vehicle.

Considering this existing set of components, a bottom-up adjustment is made to
the decomposition shown in Figure 9.13. The new decomposition relates to the
part of the model that is below the “busses” package. Figure 9.14 displays only
the changed part that was listed under the “busses” data abstraction.

To start with the modification, it must be noticed that the changes relate to
different levels in the previous decomposition: The “bus collection” data
abstraction and the “bus-b1” package in the previous decomposition are not
practical any more because a component that represents both definitions is
available. Actually, it is legal in COSEML to allow one component to
implement the functionality of more than one abstraction. Such a picture may be
preserved if the developers need to represent the relations among such detailed
abstractions. Conversely, the abstractions may be combined to achieve
consistency with the component-level representation. Further, it is highly
unlikely to desire to represent the information internal to a component, at higher
abstraction levels.

The next change addressed in this paragraph is the unification of the definitions
represented by the “seats” and the “seat” components. Immediately above those
components, “seat collection” data abstraction and “seat” package can also be
united. If this uniting is decided, the container package above (seat layout) will
be rendered redundant.

Finally, the newly found “registration” component corresponds to all brands of
busses. Therefore, its peer modules are bus-b1 and bus-b2. In the abstract levels,
this component should be represented either at this peer level or may be the one
above.

This bottom-up modification only considers the mentioned components. The b2
brand busses are not mentioned. A similar problem could occur for them also.
Here, the “bus-b2” package is not modified. If it were also decomposed
inefficiently and exact components would not match then a similar revision could
be carried out for this region in the decomposition diagram.

Component Oriented Software Engineering 239

Bus fleet

buses drawLayout

b1-list Bus-b2 registration

seat layout

b1-drawb1-list registration

Figure 9.14 The bottom-up modification of the decomposition to match existing

components

Component Oriented Software Engineering 240

Index

3D Function Points....................30

Abstract components148

abstract connectors144

abstract data structures57

abstract design7

Abstract Design Paradigm.......141

action paths................................63

Activity diagrams97

actors ...96

Adaptive maintenance75

ADP.................................141, 145

aggregation91

Agile methodologies..................20

agile methodology141

architectural frameworks.........143

architecture90

Aspect oriented software141

associations................................97

attributes54, 80

Automatic code generators115

Automation..............................132

balancing48

base class83

basis path70

black box68

blocks100

bottom-up74, 93

BPR ...42

build.. 12

build by integration......... 110, 145

Build by Integration paradigm 140

C++... 85

CAD...................................... 7, 21

cardinality 54

CASE.................................. 21, 55

CCR .. 93

CFD .. 50

class .. 81

class diagrams........................... 97

classification 83

CMM .. 23

COCOMO................................. 27

code writing 163

cohesion 79

Cohesion 58

collaboration 97, 119, 145, 153

collaboration models............... 143

commitment 140

communication connection....... 35

complexity 70

component acquisition............ 132

Component Based............. 17, 140

component developers 111

Component Development 147

component diagram 91

component diagrams............... 102

Index 241

component marketplaces161

component oriented17

Component Oriented140

component protocols126

component technologies81, 139,
143

component-based.....................125

component-based technologies109

components..............102, 110, 148

composition90

composition links148

conditional66

Conditional message................100

connector149

Connectors.......................147, 148

constraint36

context diagram47

control..................................46, 48

Control abstractions.................149

control flow50

control hierarchy........................58

control stores51

Control-flows.............................51

controlled access”......................80

core competency........................40

Corrective maintenance.............75

COSE...............................140, 142

COSEML.................131, 141, 143

COTS.........................21, 109, 155

Coupling58

custom-built.............................139

Cyclomatic complexity............. 70

DARMS.................................. 111

Data abstraction 149

data conditions.......................... 52

data design 57

data dictionary 55

data modeling 54

Data structures 15

Dataflow 45

debugging 67

decision points 72

decomposing............................. 16

decomposition................... 58, 130

definition of the solution......... 146

derived class 83

design.. 57

design patterns 109, 141, 143, 155

DFD .. 47

disassembler.............................. 42

distributed model 82

DODAN.................................. 132

domain 144, 154

domain analysis 144

Domain Analysis 109

domain assignment 132

Domain Environments 132

Domain Experts 111

Domain orientation 144

domain-specific 142

drag-and-drop 161

driver... 74

Index 242

dynamic behavior99 generalization............................ 83

Dynamic modeling97 granularity............................... 111

Embedded software3 guard 100

empirical....................................31 hardware/software co-design .. 141

encapsulation80 Hatley and Pirbhai 52

Encapsulation80 hierarchical decomposition..... 147

Entity-Relation Diagrams........133 Hierarchy 132

ERD.....................................54, 97 implementation language........ 129

event based programming152 incoming calls......................... 150

event call149 Incremental Delivery 12

event notifications150 independent path....................... 72

events.......................................149 independent paths 70

evolutionary.................................9 information hiding 80, 156

external entities..........................47 inheritance 112

families of components161 Inheritance 83

Feature Points30 initial state................................. 51

Feedback..................................132 input events............................. 152

final state51 input flow.................................. 61

finite state machine....................50 Integration................................. 73

flow boundaries61 interaction diagrams 97

flow regions...............................61 interaction modeling 145

flowchart....................................70 interface 81, 86, 142

flowgraph71 interface descriptions.............. 146

forward engineering42, 76 interface design......................... 57

FP ..25 Interface engineering 142

framework22 interfaces................................. 140

frameworks......................109, 141 Internet.................................... 134

function abstractions................149 iterative waterfall 14

function oriented........................25 Java ... 85

Functional Programming.........109 Key process areas 23

Fusion Method...........................14 KLOC 25

Index 243

Over-specification 146 large granularity155

overview 47 large-grained..............................91

Package................................... 148 lifecycle3, 9

packages.................................. 102 Lines of Code method26

paradigm................................... 11 logical decomposition..............142

Pareto principle 39 logical design...........................146

phased 9, 45 logical-level156

pluralities 158 matured domains113

polymorphism........................... 89 medium granularity155

preliminary analysis.................. 20 messages......................82, 97, 149

Preventive maintenance 75 Messages145

Private....................................... 81 methodological approach162

methodology10, 131 procedural design...................... 57

methods80, 150 procedural specification............ 56

Methods.....................................11 process 8, 47

Metrics.......................................25 Process modeling tools 22

modality.....................................54 program....................................... 2

modularity58 programmer teams 34

modules57 Project planning........................ 20

multi-disciplinary engineering 141 properties 80

multiple inheritance...................85 Protected 81

multiple-inheritance.................129 protection levels........................ 81

Normalization............................57 protocols 140

object ...81 prototyping................................ 45

Object-Based82 Public .. 81

OO ...140 quality 58

outgoing calls150 Quality control 37

output flow61 quality factors 114, 161

RAD .. 13 outsource40

Rapid prototyping 12 overloading................................84

Real-time software...................... 3 overrides84

Index 244

size oriented.............................. 25 re-engineering............................41

skeleton code 103 Reengineering............................76

small-grained 111 reflexive relation........................98

Smalltalk................................... 85 relations54, 97

software 2 repetitive....................................66

software architectures 109 representation10

software crisis 140 represents.................................147

software libraries 112 request150

specialization 83 Requirements engineering.........45

Spiral... 12 reset state51

SQA .. 37 response...................................150

state... 51 response methods150

state changes 149 reuse90, 139, 154

state chart 97 Reuse112

state transition........................... 51 reverse engineering........22, 42, 76

structural relations 133 risk...36

structure 132 roles ...98

structure chart 57 RUP ...14

structured 10 safety-critical software4

Structured English 56 scenario....................................119

structured programming 14, 66 scenarios102, 153

scientific method......................132 stubs.. 74

SDPS ...4 sub-contract 40

SEI...23 subsystems 102

semantics134 sub-systems............................... 90

separation of concerns110 sub-tree 154

sequence97 Super components................... 102

sequence diagrams...................145 super-component 160

sequential...................................66 Supporting methodologies 135

server ...82 SYDEN................................... 132

service......................................150 synchronization......................... 50

Index 245

synchronization semantics.......152 TTL................................. 113, 161

Turing Machine compatible...... 15 system..57

type definition........................... 81 System analyst...........................45

UML 14, 83, 145 system capabilities.............96, 153

use case 153 system functions96, 153

use-case diagram..................... 145 system integration....................132

validation 45, 68 test cases68

verification................................ 68 test plan68

Ward and Mellor....................... 51 top-down....................................74

waterfall 45 top-down decomposition102

Waterfall 9 TQM..37

white box 68 traditional10

wicked problem 4 transaction flow61

wiring...................................... 140 transducer142

workflow 10 transform center.........................61

XP ... 20 transform flow61

transform mapping57

Component Oriented Software Engineering 246

References
[Aktas, 1987] Ziya Aktas, 1976, Structured Analysis and Design of Information

Systems, Prentice Hall.

[Albrecht 1979] A.J. Albrecht, “Measuring Application Development Productivity,”
IBM Application Development Symposium, Monterey, California, October 1979.

[Albrecht 1983] A.J. Albrecht and J.E. Gaffney, “Software Function, Source Lines of
Code and Development Effort Prediction: A Software Science Validation,” IEEE
Transactions on Software Engineering, November 1983, pp. 639-648.

[Altintas, 2001] Ilkay Altintas, 2001, A Comparative Study for Component Oriented
Design Modeling, M.S. Thesis, Computer Engineering Department, Middle East
Technical University, May, Ankara, Turkey.

[Arrango 1994] G. Arrango, “Domain Analysis Methods,” in Software Reusability, W.
Shcaefer, R. Prieto-Diaz, M. Matsumoto (editors), Ellis Horwood, 1994.

[Avkaroğulları, 2004] Okan Avkaroğulları, 2004, Representing Design Patterns in
Component Oriented Design, M.S. Thesis, Middle East Technical University.

[Baker 1972] F.T. Baker, “Chief Programmer Team Management of Production
Programming,” IBM Systems Journal, Vol 11, No. 1, 1972.

[Bayar, 2001] Bayar V., 2001, A Component Oriented Process Model, M.S. Thesis,
Middle East Technical University.

[Boehm 1981] Barry Boehm, Software Engineering Economics, Prentice Hall, 1981.

[Booch 1994] G. Booch, Object-Oriented Analysis and Design, 2nd Edition, Benjamin
Cummins, 1994.

[Booch et al. 1999] Booch G., Rumbaugh J., Jacobson I., 1999, The Unified Modeling
Language User Guide, Addison-Wesley.

[Brown and Wallnau, 1998] Alan W. Brown and Kurt C. Wallnau, 1998, “The Current
State of CBSE,” IEEE Software, September-October.

[Chen 1977] P. Chen, The Entity-Relationship Approach to Logical Database Design,
QED Information Systems, 1977.

[Christiansen 1989] M. Christiansen, Integrating Domain Knowledge into Software
Components, Ph.D. Dissertation, Southern Methodist University, Dallas, Texas,
1989.

[Coad and Yourdon 1991] P. Coad and E. Yourdon, Object Oriented Analysis, 2nd
edition, Prentice-Hall, 1991.

[Coleman et al. 1994] D. Coleman et al., Object-Oriented Development: The Fusion
Method, Prentice-Hall, 1994.

[D’Souza, 1998] Desmond Francis D'Souza, Alan Cameron Wills, 1998, Objects,
Components, and Frameworks With UML: The Catalysis Approach, Addison-
Wesley.

[Dennis 1973] J.B. Dennis, “Modularity” in Advanced Course On Software Engineering,
F.L. Bauer (ed.), Springer-Verlag, New York, 1973.

References 247

[Diaz 1987] Ruben, Prieto-Diaz, “Domain Analysis for Reusability,” COMPSAC 87:
The Eleventh Annual Computer Software and Applications Conference, October pp:
23-29, 1987.

[Dogru 1999] Ali Dogru, 1999, “Component Oriented Software Engineering Modeling
Language: COSEML,” Technical Report TR-99-3, Computer Engineering
Department, Middle East Technical University, Ankara, Turkey.

[Dogru and Altintas 2000] Ali. H. Dogru, Ilkay. Altintas, “Modeling Language for
Component-oriented Software Engineering: COSEML,” The Fifth World Conference
on Integrated Design and Process Technology, June 4-8, Dallas, Texas, 2000.

[Dogru and Tanik 2003] Dogru A., Tanik M.M., 2003, “A Process Model for
Component Oriented Software Engineering,” IEEE Software, Vol 20, No. 2,
March/April, pp. 34-41.

[Dogru et al. 1992] A. H. Dogru, S. N. Delcambre, C. Bayrak, Y. T. Chen, E. S. Chan,
W. Yin, M. G. Christiansen, and M. M. Tanik, “An Integrated System Design
Environment: Concepts and a Status Report,” Journal of Systems Integration,
October, 2(4), pp. 317-347, 1992.

[D'Souza, D.F. and Wills 1998] D'Souza, D.F. and Wills, A.C. Objects, Components,
and Frameworks With UML: The Catalysis Approach. Reading, Massachusetts:
Addison-Wesley, 1998.

[Dursun and Dogru 1995] Huseyin Dursun, Ali H. Dogru, “Prototyping Specifications
through Visualization,” The First World Conference on Integrated Design and
Process Technology, December 8-9, Austin, Texas, Vol. 1 pp:362-368, 1995.

[Fayad 2000] Mohamed E. Fayad, “Introduction to the Computing Surveys’ Electronic
Symposium on Object-Oriented Application Frameworks,” ACM Computing
Surveys, Vol. 32, No. 1, March: pp. 1-11, 2000.

[FunSoft 2001] Funsoft users manual, Funsoft, 2001, Austin, Texas.

[Gamma et al. 1995] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley,
Reading, Massachusetts, 1995.

[Hatley and Pirbhai 1987] D.J. Hatley and I.A. Pirbhai, Strategies for Real-Time System
Specification, Dorset House, 1987

[Heineman and Councill 2001] George T. Heineman and William T. Councill,
Component-Based Software Engineering, Addison Wesley, 2001.

[Herzum and Sims, 2000] Peter Herzum and Oliver Sims, Business Component Factory,
Wiley, 2000.

[Holibaugh 1993] Robert Holibaugh, Joint Integrated Avionics Working Group
(JIAWG) Object-Oriented Domain Analysis Method (JODA), CMU/SEI-92-SR-3,
November, Pittsburgh, Philadelphia: Software Engineering Institute, Carnegie
Mellon University, 1993.

[Hopcroft and Ullman, 1979] John E. Hopcroft, Jeffrey D. Ullman, Introduction to
Automata Theory, Languages, and Computation, Addison Wesley, 1979.

References 248

[Itoh et al. 1998] Kiyoshi Itoh, Toyohiko Hirota, Satoshi Kumagai, Hiroyuki Yoshida
(editors), Domain Oriented Systems Development: Principles and Approaches,
Information Processing Society of Japan, Gordon and Breach Science Publisher,
Japan, 1998.

[Jacobson, 1992] I. Jacobson, Object-Oriented Software Engineering, Addison-Wesley,
1992.

[Kang et al. 1990] Kyo C. Kang, Sholom C. Cohen, James A. Hess, William E. Novak,
A. Spencer Peterson, Feature-Oriented Domain Analysis (FODA) Feasibility Study,
CMU/SEI-90-TR-21, ADA 235785, Pittsburgh, Philadelphia: Software Engineering
Institute, Carnegie Mellon University, 1990.

[Kang et al. 1998] K. Kang, Kim, S., Lee, J., Kim, K., Shin, E., Huh, M., “FORM : A
Feature Oriented Reuse Method with Domain-Specific Reference Architectures”,
Annals of Software Engineering, Volume 5, J. C. Baltzer AG Science Publishers,
Red Bank, NJ, USA, pp. 143-168,1998.

[Krieger and Adler 1998] Krieger D., Adler R.M., “The Emergence of Distributed
Component Platforms”, IEEE Computer, March, 1998.

[Manzer 2002] Ayesha Manzer, Formalization of Core-Competency Processes for
Integration of Value-add Chains, PhD. Dissertation, Middle East Technical
University, July 2002.

[McCabe 1976] T. McCabe, “A Software Complexity measure,” IEEE Transactions on
Software Engineering, Vol. 2, December 1976.

[McCall 1977] J. McCall, P. Richards, G. Walters, Factors in Software Quality, NTIS
AD-A049-014, 015, and 016, November 1977.

[Muller 1997] P.A. Muller, Instant UML, Wrox Press, Birmingham, Canada, 1977.

[Neighbors 1989] J.M. Neighbors, “DRACO: A Method for Engineering Reusable
Software Systems,” Software Reusability, Vol. 1, pp: 295-320, ACM, 1989.

[Paulk et al. 1994] M.C. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis, The Capability
Maturity Model: Guidelines for Improving the Software Process, Carnegie Mellon
University Software Engineering Institute, Addison-Wesley, 1994, Reading,
Massachussetts.

[Prather 1997] R. Prather, "Regular Expressions for Program Computations," The
American Mathematical Monthly, Vol. 104., No. 2, pp. 120-130, 1997.

[Pressman 1997] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 4th
Edition, Mc-Graw Hill, 1997.

[Rambaugh et al. 1991] J. Rambaugh et al., Object-Oriented Modeling and Design,
Prentice Hall, 1991.

[Riebisch 2003] Matthias Riebisch: “Towards a More Precise Definition of Feature
Models.” Position Paper. In: M. Riebisch, J. O. Coplien, D, Streitferdt (Eds.):
Modelling Variability for Object-Oriented Product Lines. BookOnDemand Publ.
Co., Norderstedt, 2003. pp. 64-76.

References 249

[Salman 2002] Salman, N. “Extending object oriented metrics to components.” The 6th
World Conference on Integrated Design and Process Technology. Pasadena,
California, June 23-28, 2002.

[Simon 1969] H.A. Simon, Sciences of the Artificial, MIT Press, Cambridge,
Massachusetts, 1969.

[Simos 1996] M. Simos, “Organization Domain Modeling (ODM): Extending
Systematic Domain Analysis and Modeling beyond Software Domain, IDPT, 1996.

[SPC 1990] Software Productivity Consortium, A Domain Analysis Process
Domain_Analysis-90001-N, January, Herndon, Virginia, 1990.

[Szypersky 1998] Clemens Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison Wesley, New York, 1998.

[Tanik and Chan 1991] Murat M. Tanik and Erik S. Chan, 1991, Fundamentals of
Computing for Software Engineers, Van Nostrand Reinhold, New York.

[Tanik and Ertas 1992] M.M. Tanik and A. Ertas, “Design as a Basis for Unification:
System Interface Engineering,” ASME PD-Vol. 43, pp: 113-114, 1992.

[Tanik and Ertas 1997] M.M. Tanik and A. Ertas, “Interdisciplinary Design and Process
Science: A Discourse on Scientific Method for the Integration Age,” Journal of
integrated Design and Process Science, September, Vol. 1 No. 1: pp. 76-94, 1997.

[Wallnau et al. 2002] Kurt C. Wallnau, Scott A. Hissam, and Robert C. Seacord,
Building Systems from Commercial Components, Addison Wesley, 2002.

[Ward and Mellor1985] P.T. Ward and S.J. Mellor, Structured Development for Real-
Time Systems, Yourdon Press, 1985.

[Yin 1988] Weiping Yin, An Integrated Software Design Paradigm, Ph.D. Dissertation,
Southern Methodist University, Dallas, Texas, 1988.

[Yourdon 1989] E.N. Yourdon, Modern Structured Analysis, Prentice-Hall, 1989.

	Software Engineering Concepts
	Introduction
	Software
	Types of Software

	Software Engineering
	Further sub-fields
	Relation with other fields

	The process
	Terminology
	Other Process Models

	Modeling Formalisms
	Modeling emphasis in different approaches

	Selecting appropriate methodology
	Summary
	Questions
	References

	Software Project Management
	Introduction
	Project resources
	Human resources
	Software and hardware resources

	Process Maturity
	Estimation and Metrics
	Base for metrics
	Size Oriented Metrics
	Empirical estimation
	Function Oriented Metrics
	Extensions to Function Points
	Translating between the approaches

	Scheduling
	Staffing
	Risk Management
	Quality
	Quality Factors
	Statistical Quality Assurance

	Software Acquisition
	Configuration Management
	Maintenance
	Summary
	Questions
	References

	Traditional Software Development
	Looking back
	Requirements
	Dataflow diagrams
	Control Flow Diagrams
	Finite-State Machine
	Ward and Mellor control flows
	Hatley and Pirbhai control flows

	Entity relationship diagrams
	Requirements dictionary
	Procedural specifications

	Design
	Structural design
	Transform Mapping

	Coding and Debugging
	Comment lines and code formatting
	Structured programming
	Debugging

	Testing and integration
	Testing approaches
	Basis path testing
	Other test types
	Integration

	Maintenance
	Reengineering

	Summary
	Questions
	References

	Object Oriented Software Engineering
	Object Orientation
	Object Based Environment
	Interaction
	Classification
	Inheritance
	Multiple inheritance
	Interfaces
	Polymorphism
	Composition
	Composition versus inheritance

	Object Oriented Methodologies
	General approach

	Requirements analysis and specification
	Use case analysis
	Class diagrams
	Interaction diagrams

	Design
	Design stages

	Coding
	Summary
	Questions
	References

	Introduction to Domain Oriented System Development
	Introduction
	Domain Analysis in the developing Perspective
	Justification for Domain Specific Development
	There is no free Reuse

	The Domain Oriented Process
	Definition of a Domain
	Exploiting the Domain
	FODA
	FORM
	Component Oriented Design
	Expectations from a Component Oriented approach
	Peculiarities
	Specification

	A Specifically Component Oriented Approach
	Abstract Design Paradigm
	Towards a Methodology
	Futuristic Step: Automatic Location and Integration

	Domain Model to Development Medium

	Summary
	Questions
	References

	Component Oriented Software Engineering
	Introduction
	Recent Trends
	Constituents of the new approach
	Possibilities
	Incorporating architectural concepts

	Component Oriented Process
	Solution is available in parts

	Component Oriented Modeling Language
	Leveling with components!
	Interfaces and messages
	Connectors

	Development
	Requirements Specification
	Domain Model Utilization
	Interaction Analysis

	Detail Design and Implementation
	Plurality of mapping
	Partial representation of abstractions
	Matching abstractions to components
	Component Acquisition
	Internet services

	Some Guidelines
	Testing and Integration

	Conclusions
	Questions
	References

	Traditional Development of a Travel Reservation System
	Introduction
	Estimation
	Reservations
	Trips
	Calculating the Function Points
	Empirical estimations

	An early prototype for investigating requirements
	Requirements Analysis
	Entity Relationship diagrams
	Concluding the requirements model

	Design
	Data Design
	Refining the dataflow diagrams
	Structural design

	Object Oriented Development of a Travel Reservation System
	Introduction
	More specifications
	Starting with the requirements modeling
	Reservation system-function
	Next use case
	Return system function
	List trips system function

	Next Capability: trip management
	Bus List Maintenance
	Trip list maintenance system function

	Business automation capability
	Payroll processing system function
	Accounting system function

	Final capability: client list
	Periodic mailing system function
	Client Monitoring System Function

	Class diagrams
	Final comments on requirements model
	Design
	Objects revisited
	Database interface
	Graphical user interface

	Coding

	Component Oriented Development of a Travel Reservation Syste
	Introduction
	The Domain
	Domain Dictionary
	Design Patterns

	A Bus Reservation System
	Implementation by Components
	Scenario Changed

