
Design and Management of a System of Systems: A

Systems Engineering Approach

By

Bradley Whittington

A MASTER OF ENGINEERING REPORT

Submitted to the College of Engineering at

Texas Tech University in

Partial Fulfillment of

The Requirements for the

Degree of

MASTER OF ENGINEERING

Approved

Dr. J. Smith

Dr. A. Ertas

Dr. T.T. Maxwell

Dr. M.M. Tanik

29 June, 2001

iii

ACKNOWLEDGEMENTS

I would like to express my sincerest thanks to Dr. Atila Ertas for taking the time to develop this

program and give professionals a chance to further their education once again. His guidance

throughout the last year has been invaluable. I would also like to thank Dr. Timothy Maxwell who has

also taken a majority of his weekends the past year ensuring that each student reached their fullest

potential. Further thanks go to the other members of my committee, Dr. Tanik and Dr. Smith for their

helpful criticism and advice.

I would like to express thanks to Raytheon in Garland, Texas for sponsoring this program. As

evidenced later in this paper, I believe continuous training to be paramount to success.

I would like to thank my Mother for her love, unrelenting support and encouragement

throughout the years.

I would like to thank my Father for his love and support throughout the years. I have worked

with industry leaders, Nobel Laureates, rocket scientists and more and, although he chooses not to

flaunt this fact, he is one of the most brilliant men I have ever known.

Finally, I would like to thank my wife for her unconditional love and support throughout this

entire process. She endured untold late nights, missed weekends and more. She deserves everything

that I could give her and more, so, as a start, I dedicate this to her.

iv

TABLE OF CONTENTS

DISCLAIMER.. VII

ABSTRACT..VIII

LIST OF FIGURES...IX

LIST OF TABLES ...X

CHAPTER I INTRODUCTION ..1

CHAPTER II BACKGROUND INFORMATION..3

2.1 LITERATURE REVIEW...3

2.2 BACKGROUND...4

CHAPTER III GENERIC DESIGN OF THE SYSTEM OF SYSTEMS..5

3.1 THE NEED FOR DESIGN ...5

3.2 COMPLEXITY DEFINED ...5

3.2.1 MANAGING COMPLEXITY..9

3.2.2 TOOLS FOR MANAGING COMPLEXITY ...11
3.2.2.1 APPROPRIATE CONDITIONS FOR USE ... 11

3.2.2.2 APPLICATION AREAS .. 12

3.2.2.3 RESULTS.. 12

3.2.2.4 RESOURCES NEEDED .. 13

3.2.2.5 HOW THE METHOD IS APPLIED.. 13

3.2.2.6 IMPORTANT FEATURES AND ATTRIBUTES ... 13

3.2.2.7 RELATED METHODS................................ 13

3.2.3 CONCLUSIONS AND SUMMARY ABOUT COMPLEXITY IN THE SYSTEM13

3.3 GENERIC DESIGN...14

3.3.1 OPTIONS FIELD AND A TRIPLY-STRUCTURED QUAD..16

3.4 AN EXAMPLE OF GENERIC DESIGN...17

3.4.1 BACKGROUND FOR THE EXAMPLE................................18

3.4.2 APPLICATION OF ELECTRONIC LIGHT TOOL TO GENERIC DESIGN...............................20

3.4.3 RELATIONSHIP ANALYSIS ..23

3.4.4 EXAMPLE CONCLUSIONS..24

3.5 DESIGN CONCLUSIONS...24

CHAPTER IV MANAEMENT CONCERNS FOR THE SYSTEMS ENGINEER ...25

4.1 SYSTEM ENGINEERING AND PROGRAM MANAGEMENT: ROLES AND RESPONSIBILITIES........25

4.1.1 COMPARISON OF SYSTEM S ENGINEERING TO PROJECT MANAGEMENT26

4.1.2 THE INTERSECTION OF SYSTEMS ENGINEERING AND PROGRAM MANAGEMENT28

v

4.1.2.1 INTEGRATION M ANAGEMENT.. 28

4.1.2.2 SCOPE MANAGEMENT... 29

4.1.2.3 QUALITY MANAGEMENT... 31

4.1.2.4 RISK MANAGEMENT ... 33

4.1.2.5 TIME MANAGEMENT ... 34

4.1.2.6 COMMUNICATIONS MANAGEMENT.. 35

4.1.2.7 SUMMARY OF KNOWLEDGE AREAS ... 35

4.2 TRAINING THE TECHNICAL KNOWLEDGEBASE..37

4.3 SCHEDULING...40

4.4 BUDGET ..41

4.5 CONCLUSIONS ABOUT PROGRAM MANAGEMENT RESPONSIBILITIES FOR THE SYSTEMS

ENGINEER...42

CHAPTER V QUALITY ASSURANCE AND THE SYSTEMS ENGINEER ..44

5.1 SOME THOUGHTS ON QUALITY ASSURANCE................................44

5.1.1 QUALITY DEPARTMENT FUNCTIONS...45
5.1.1.1 INSPECTION................................ 45

5.1.1.2 TESTING .. 45

5.1.1.2.1 UNIT (MODULE) TESTING ... 46

5.1.1.2.2 INTEGRATION TESTING ... 47

5.1.1.2.3 ACTIVITIES PRIOR TO SYSTEM TESTING ... 48

5.1.1.2.4 SYSTEM TESTING... 49

5.1.1.3 QUALITY ENGINEERING... 51

5.1.1.3.1 CORRECTIVE ACTION... 51

5.1.1.3.2 AUDITS................................ 52

5.1.1.3.3 QUALITY EDUCATION... 52

5.1.1.3.4 PRODUCT SAFETY ... 53

5.1.2 HANDLING DEFECTS...53

5.1.3 ISO 9001 ...56

5.2 CONCLUSIONS ABOUT QUALITY..60

CHAPTER VI CONFIGURATION MANAGEM ENT AND THE SYSTEMS ENGINEER...............................61

6.1 SOME THOUGHTS ON CONFIGURATION MANAGEMENT..61

6.1.1 DEVELOPING A CHANGE MANAGEMENT PLAN..62

6.1.2 HANDLING PROJECT CHANGES...62
6.1.2.1 GETTING PROJECT STATU S ... 64

6.1.2.2 EVALUATION OF THE CAUSE AND EFFECT ... 65

6.1.2.3 MODIFYING THE SCOPE, SCHEDULE OR RESOURCES.. 65

6.1.2.4 NOTIFICATION OF CHANGE .. 66

6.1.3 CHOOSING A COURSE OF ACTION ...66

vi

6.2 CONFIGURATION MANAGEMENT STANDARDS ...68

6.3 CONCLUSIONS ABOUT CONFIGURATION MANAGEMENT................................69

CHAPTER VII SPECIAL ENGINEERING TOPICS................................70

7.1 INTEROPERABILITY OF THE SYSTEM ..70

7.2 SYSTEM LOGISTICS AND THE SYSTEM ENGINEER...73

7.3 SYSTEM SECURITY ..74

CHAPTER VII MAINTENANCE OF THE SYSTEM AND THE SYSTEM ENGINEER................................77

8.1 RELIABILITY CENTERED MAINTENANCE ..77

8.1.1 BACKGROUND ON RELIABILITY CENTERED MAINTENANCE.......................................77

8.1.2 PRINCIPLES OF RELIABILITY CENTERED MAINTENANCE................................77

8.2 THE “BACKFIT” RCM PROCESS...82

8.3 CONCLUSIONS ABOUT SYSTEM MAINTENANCE ..85

CHAPTER IX CONCLUSIONS AND RECOMMENDATIONS...86

REFERENCES..88

APPENDIX A...90

vii

DISCLAIMER

This report is to be considered a generic approach to designing and managing a system of

systems; from a Lead Systems Engineering viewpoint. It will not be an all-inclusive document but

rather a template for design. The opinions expressed in this paper are strictly those of the author and

are not necessarily those of Raytheon, Texas Tech University, nor any U.S. Government agency.

viii

 ABSTRACT

In today’s world of complex systems, the need for Systems Engineers who understand the

system as a whole, plus have knowledge of other “intangibles” i.e. Program Management, Specialty

Engineering, Configuration Management, etc. is at a premium. With this system complexity,

however, is cost. To offset this cost, more and more customers are taking legacy systems and

combining them to make a new system. These “systems of systems” are obviously much more

complex than their predecessors. The Systems Engineers that were once responsible for a whole

system; are now responsible for a component of the new system. This paper will delve into the design

of these systems of systems and discuss how a Systems Engineer, particularly a Lead Systems

Engineer (LSE), should design and manage one of these systems. The subject matter will be at a high

level so that applicability is universal.

ix

LIST OF FIGURES

Figure 1 – The Problem Solver................................6

Figure 2 – Double Loop Model................................8

Figure 3 – Poly-Loop Model...8

Figure 4 – DELPHI Method ..12

Figure 5 – Theory of Generic Design ...15

Figure 6 – Triply-Structured Quad...16

Figure 7 – A Knitted Tapestry...17

Figure 8 – Two-Quad-Tapestry................................21

Figure 9 – Option Field Technique...21

Figure 10 - Identification of Dimensional Cluster ...23

Figure 11 - Relationship of Project Management to Other Management Disciplines26

Figure 12 - Scope Management Process Overlap with Systems Engineering Processes....................30

Figure 13 - Quality Management Process Overlap with Systems Engineering Processes..................32

Figure 14 - Risk Management “Life Cycle” ..34

Figure 15 - Risk Management Process Overlap with Systems Engineering Processes......................35

Figure 16 - An Example of Microsoft Project  Scheduling Tool..41

Figure 17 – 20 Elements of ISO 9001...57

Figure 18 – Top Level Product Process..58

Figure 19 – Process Definition Through Gating Process ..59

Figure 20 – Process Maturity Levels60

Figure 21 – Problem Resolution with a CCDB..64

Figure 22 – A Generic Approach to a CM Process..67

Figure 23 – DIICOE Runtime Structure ...71

Figure 24 – Levels of DII COE Compliance ...72

Figure 25 – Segment Types of the DII COE Environment ...72

Figure 26 - The Bathtub Curve of Reliability ..78

Figure 27 - Age Reliability Patterns...79

Figure 28 - Logic Analysis (Decision) Tree ..81

Figure 29 - Managing Maintenance as a Business ...85

x

LIST OF TABLES

Table 1 - Target: Complete Electronic Light Table System (Clusters)22

Table 2 - Complete Electronic Light Table System (Individual Dimensions and Options -Software) 22

Table 3 - Complete Electronic Light Table System (Individual Dimensions and Options Hardware) 22

Table 4 - Complete Electronic Light Table System (Individual Dimensions and Options -Support) ..23

Table 5 - Comparison of Project Management and Systems Engineering Bodies of Knowledge27

Table 6 - Summary of Knowledge Area Dominance by Profession...36

Table 7 - Types of Skills and Knowledge Ranked by Decreasing Importance38

Table 8 - Hours of Training Offered for Each Type of Skills and Knowledge, Ranked by Mean.......39

Table 9 – Facets for a CMP to Have...62

Table 10 – Items for the CMP..63

Table 12 – The Risk Priority Matrix...68

Table 14 – Some Common Configuration Management Standards ...68

1

CHAPTER I

INTRODUCTION
Technology and the world around us are changing rapidly. What was once thought of as “high

tech” is now non-existent or only thought of in comical tones. This new technological outbreak has

developed into a perplexing puzzle for engineers. With this new technology comes an increase in

price, how then, is it possible to deliver new systems capable of feats of wonder and still manage the

cost of the system?

One way of dealing with this problem is being used frequently now in the military and is gaining

recognition in the civilian world as a viable solution. The existing systems that a customer uses are

connected creating one large super system – a system of systems! These systems usually offer

solutions to the customer’s immediate needs while positioning them for future growth and technology

surges.

This seems like a simple cost-effective solution, and it can be if the Systems Engineering

required to create a system of systems is properly performed. As an example; imagine a cell phone.

Certainly it is a sophisticated device and doubtless somewhere there is an engineer who is an expert

on that cell phone. He/She understands how this system is mechanically assembled, what frequency it

operates at, how the RF radiation translates from it, etc. However, if we imagine this cell phone,

about 20 satellites, and 3 million other phones trying to talk together all at once, this system of

systems can be complicated. Now add some of the new features that are popular today: voice

recognition (“Call John.”), Internet, Personal Digital Assistants (PDA), etc, it is not difficult to see

that the Systems Engineering team for this project needs to have plans in place on how to deal with

various scenarios.

The ability of a Systems Engineer to effectively lead the development and implementation of

these systems will depend upon their ability to:

• Design the system such that it is manageable by the person or people whose job it is to

manage the system. This person may be the actual system design engineer!

• Effectively interface with the Project Manager and engineer solutions with the Program

Manager’s concerns in mind.

• Effectively handle the technical challenges that present themselves from the networking of

these systems. In a system of systems, all of the interfaces will not necessarily be the same,

technically or politically!

• Effectively maintain a configuration of the system.

• Provide for the present and future maintenance of the system.

• Handle the logistics of a large system.

2

Large-scale systems have become prevalent in our society. “Systems rapidly become too large-

scale with respect to the human capacity to observe, comprehend, analyze, steer, amend and tolerate.”

[Maxwell, 2001] This report will begin with a discussion on the generic design of the system

including how to handle the complexity of such a large system. Next, we will discuss what concerns

that are normally associated with Program Management might be the Systems Engineer’s

responsibility and vice versa. We will discuss Quality Assurance, Logistics, Maintenance,

Configuration Management and more. Every topic that is discussed will be looked at from a Systems

Engineering point of view with a particular bent toward these large-scale systems of systems. Finally,

the author will give conclusions and recommendations based on his experience of utilizing these

concepts on actual systems that are in the field today.

3

CHAPTER II

BACKGROUND INFORMATION

2.1 LITERATURE REVIEW

There has been and continues to be significant studies about the subjects within the individual

chapters of this paper. In this study, we will take these individual components within the chapters and

combine them so that the Systems Engineer may have a generic template for the design and

management of a system of systems. Further, we will add to these discussions points of emphasis that

become more relevant when dealing with a system of systems.

Harrington (2000) presented a white paper to the Society for Maintenance and Reliability

Professionals detailing how the concept of a Reliability Centered Maintenance (RCM) Preventative

Maintenance (PM) program came about. His six steps for a RCM program were especially helpful

and were “tweaked” to be applicable to the subject at hand.

Watts and Mar (1996) performed a study asking professionals in the Systems Engineering field

what further training was required for a person to be come a “complete” Systems Engineer. Surveys

were sent to between March 19, 1996 to May 15, 1996 to various industry leaders. Portions of their

results are presented in Chapter IV. The results are generic as to classes and specific as to topics.

These results were helpful in showing the author’s contention that maintenance of the technical

knowledgebase is critical to the management of a system of systems.

Kauffman (1998) presented a white paper at the 8th Annual International Symposium of the

International Council on Systems Engineering regarding how Systems Engineering and Program

Management overlap. For his comparison, he examined the differences between various Engineering

standards and the Project Management Book of Knowledge. Mr. Kauffman’s conclusions were

largely generic and must be modified slightly to manage a system of systems, however his greatest

conviction of “plan early” lends credence to the author’s most important point of the chapter. This

paper is discussed in detail in Chapter IV.

Ginac (1997) did work in the area of Software Quality Assurance. He spends a great deal of

effort expanding the concepts of SQA to four domains outside the “realm” of SQA. Developers,

Testers, Production Services and Program Management. His concepts on how the Program Manager

should utilize SQA was of great interest.

The Center for Maintenance Technologies (2001) has a website

(http://www.amsinc.com/cmt/OVERVIEW.HTM) that discusses the benefits

4

Warfield (1994) created a textbook called A Science of Generic Design. This book’s main focus

is on managing system complexity through generic design. Mr. Warfield develops generic design as a

science and then applies the science back to design. Its principles are found throughout chapter three.

Vigilinx (2001) created a white paper on system and network security. This white paper is

written with selling Vigilinx security software in mind. However, its introduction to system security

was especially useful as background information as is read in chapter seven.

Ken Wheeler (2001) created a power point presentation on the DIICOE initiative for computer

interoperability as demonstrated by the military. The information provided as to the internal

structuring of the runtime segments was useful in this paper as means of explanation as well as in the

office where one project that is currently being bid requires DII COE level 5 compliance.

2.2 BACKGROUND

The thought process for this paper originated with the realization that the United States Military

is shrinking in size. Not only are they shrinking in manpower, but in budget as well. This poses a

problem for the military due to the fact that in order to stay ahead of the world militarily means

maintaining and extending our technological advantage. In order to accomplish this goal, they must

take existing systems and create them into “supersystems” or a system of systems. Through this

protocol, money can be saved and the effective technological life of a system may be furthered.

Systems Engineering has long been in charge of creating and maintaining systems, however,

these new systems of systems create some new problems for the Systems Engineer. This paper has

taken components of system integration that may, in the past, have been on the technical sidelines to

the engineers (with the exception of Quality and Safety) and brought them to the forefront of thought.

It is imperative that today’s Lead System Engineer be able to speak to all areas of the system, not

only the technical ones, for that is what in today’s world of a system of systems.

5

CHAPTER III

GENERIC DESIGN OF THE SYSTEM OF SYSTEMS

The principal purpose of theoretical research…is to find the point of view from which the subject

appears in its greatest simplicity.

- J. Willard Gibbs

3.1 THE NEED FOR DESIGN

“Large systems have become prevalent in society. They have a pervasive influence on people

everywhere. Their growth can be compared to making a quilt, A variety of components appearing in a

variety of forms share an attribute: susceptibility to being linked. As linkages appear, systems grow

rapidly in scale.

The impact of a failure of a quilt is normally quite confined, so that the comparison of a large

system with a quilt stops when we look at the failure. As systems get larger, the impact of failure also

grows larger. Not all failures are visible, but many of them become highly-visible. What we learn

about those failures that we happen to see or hear about leads us to believe that there are many others

that we do not learn about, and still others waiting to happen.” [Warfield, 1994]

As shared in the introduction, systems are gaining complexity. Such is the scenario with our

system of systems. Depending on the scenario, an individual system may be complex, however, when

we start linking these individual systems together, the complexity induced must be managed or the

complexity will overwhelm the process. As is a theme throughout this paper, we will attempt to

manage this complexity through extensive initial planning and management through system design

(which is a form of early planning).

3.2 COMPLEXITY DEFINED

An example, given by Dr. Tim Maxwell in his lecture notes for the class “Generic Design,”

reverts back to the proverbial tree falling in the woods. The question is if no one is around, does the

tree make a noise when it falls. The answer depends upon the definition of sound that one chooses to

embrace. If one is referring to the ability to make sound waves, then the answer is “yes,” however, if

one defers to the physical definition of sound requiring a sender, a carrier and a receiver, then the

answer is “no.” This example leads us to the two types of complexity that can obscure our reasoning.

6

Situational complexity tends to hide the interception of phenomena from the mind, whereas cognitive

complexity are aspects of the situation that make the interpretation of interpreted data difficult. The

combination of these complexities leaves us with a generic definition:

Complexity: The limitation of the human mind and reasoning capabilities

As a rule, cognitive complexity is not an issue until the mind begins to consider the problem or

situation. When many different imputs are considered that are not easily understood the complexity

can not help but escalate. As linkages are identified/mis-identified, the situation becomes more

complex.

For normal, smaller problems, the answer is simple, we are able to surround the problem,

understand the problem and see the linkages and thus solve the problem readily. For large problems,

it is not possible to extract oneself to an extent that the problem may be surrounded. Thus, the

problem solver becomes part of the problem! Figure 1 graphically demonstrates this perspective.

Figure 1 – The Problem Solver

7

As shown, and as is obvious, when the system becomes more complex, we can often get in our

own way. When dealing with the system of systems, it is imperative that it be broken down into its

most basic components and rebuilt, stopping at such a level that the System Engineer in charge of that

particular section will be able to firmly grasp the operation of that section. Of course, the LSE must

surround themselves with a team that is capable of understanding these levels and relaying the

pertinent information back to the LSE. It is when these interactions take place that we see the next

level of difficulty “pop up.”

Human perspective can be a good thing. Indeed, when solving a problem and one person is

stumped, a new perspective may lead to the resolution of the problem. However, just like the old

saying, “too many cooks spoil the broth,” too many perspectives may confuse matters even worse.

Every team member of the technical team is going to bring their own unique perspective and

interpretation of the situations encountered to the table. This is one type of linkage escalation. A

second type of linkage escalation occurs with an enlarged set of problem perceptions and the process

related difficulties of getting a group to work as a group.

We are now in a double loop escalation. There is the original perception of the problem solver

coupled with (linked to) the new components that have been brought to the table by the technical

team. While the group members may individually posses content knowledge that is relevant to the

problem, they may not be knowledgeable in how to make this group of people an effective problem

solving team. Also, dual roles in groups are difficult. “If one is contributing knowledge to a solution,

while trying to steer the group’s activity, a conflict of interest is likely to be perceived by the group.”

[Warfield, 1994] This dynamic within the technical team proves a difficult task for the LSE.

Generally, a person becomes a LSE due to the experience and management skills that they posses.

However, as we have just stated, if the LSE leans to much on their experience and applies it to the

problem, the group may see a conflict of interest. When the initial design of the system of systems is

occurring,

Figure 2 gives a graphical approach to the double loop approach to problem solving. Remember

Figure 1 had the problem solver that initially had their arms around the problem and understood it

completely prior to outside variables increasing the complexity to such a point that they were

overwhelmed? For this initial problem and simpler issues, the first loop may be sufficient. However,

as the system grows more complex, the second loop may be required- this may be due to a

misunderstanding of the situation and thus the selection of governing variables or options. According

to Maxwell [1994] however, there are significant problems with the double loop process:

8

Figure 2 – Double Loop Model

• Many people do not know how to conduct a double loop

• They do not know that they do not know

• They do not know that they have designs in their heads to ensure the first two options

• They do not know that they cannot learn to do so with their present skills.

If this is the case, trying to implement this concept will escalate the complexity of the problem in the

name of reducing it. On top of all this, the design target may change, requirements documents may

change, resources may disappear, schedules may slip, etc.

If more than one iteration of learning is required from the double -loop model, one may choose to

use an enlarged model called the poly-loop model as seen in Figure 3.

Figure 3 – Poly-Loop Model

9

The following is John Warfield’s [1994] description of the poly-loop model, modified slightly for

application to our case of the system of systems:

0-LOOP Enter with a process plan. Act on the problem (as perceived via the plan) and achieve

result A. This usually only happens with the most trivial problem cases.

1-LOOP Enter with desired outcome at B and A process plans. Act on the problem (as

perceived via the plan) and achieve results A. Feed back the results and compare with

what is desired. Try the plan a second time, using new information to provide

additional input to the process, and achieve results A. Keep doing this until it is

decided that the problem is not getting solved.

2-LOOP Enter with desired outcome at C and a set of process plans. Act on the set to pick a

new plan that promises to outdo the original plan. Now use the new one to act on the

problem. Feed back the results to compare with desired outcome C. Repeat with new

information supplied to the new plan. Iterate as long as necessary until either the

problem is solved or it is concluded that the set of processes is not adequate.

3-LOOP Enter with the desired outcome at D, and a theory. Act on the theory to develop a

new process set. Provide this set as entry to the 2-LOOP situation, and keep trying

until either the problem is solved or it is decided that the new theory is inadequate.

Iterate with a new theory, and try again. If the problem is still not able to be solved,

go back to point E.

4-LOOP Enter with a set of foundations to accompany the desired outcome entered at point E.

Act on the foundations to produce a new theory. Act on that to produce new

processes. Act on the problem and observe the outcomes at point A. Keep trying until

you get a set of foundations, theory, and a methodology that works.

This problem plan was developed for a new form of science but its application extends to the system

of systems. When designing the system, if the foundation, theory and processes are not adequate, the

system design will come crashing down! Having a well thought-out, well laid-out design is the best

was to control complexity in the design. This being said, escalation of complexity will be the one

of greatest challenges that the Systems Engineer will face when building a system of systems.

3.2.1 MANAGING COMPLEXITY

When we attempt to deal with the complexities that have entered our design and integration of

the system, we realize that in order to manage the complexity, we must understand it. Obviously if it

were easy to understand it would not be that complex and therein lies the conundrum, complexity

10

always involves elements of the unknown. When we are faced with complexity, John Warfield [1994]

gives four approaches to managing it:

• Control the situational escalation

• Reduce the personal cognitive burden

• Eliminate the situational detraction set

• Provide a personal enhancement set

Let us look at ways to control the situational escalation. What are some factors that produce

situational escalation?

• Varying perception among team members

• Difficulty in managing team efforts

• Presence of organizational or cultural constraints

• Difficulty in communicating solutions to implementers

• Change in problem situation in time

• Lack of actors to field needed roles

• Difficulty of dealing with the foregoing when several or all occur in combination

“It is reasonable to be optimistic about overcoming these factors, but only if they are dealt with

as a set, because resolutions to one factor are not necessarily resolutions of others, and may even

escalate them.” [Warfield, 1994]

As we have demonstrated, a system of systems can add up complexity on a monumental scale.

There is the need for order when we design, not only in the final product, but in the process itself.

This need for order is the need for design, the only way to reduce the complexity of the system is to

plan ahead, which is to say, design ahead.

When we design, we will follow various plans and processes. How useful are these processes in

helping to manage the complexity of the system? Dr. Tim Maxwell [2001] states that designed

processes must be designed to:

• Formulate situations in the form of sets

• Limit situational escalation

• Reduce personal cognitive burden

• Eliminate most situational enhancements

In doing this, significant areas include:

• Information handling

• Idea generation

11

• Environment design and control

• Role specification

• Leadership (facilitator, members, organization)

• Quality Control

• Cultural Environment

• Institutional Change Strategy

As always, putting a little forethought into these processes used to design the system of systems will

eliminate complexity and enhance the design.

3.2.2 TOOLS FOR MANAGING COMPLEXITY

There are several “tools” to help manage the complexity in a system. Within a system of

systems, however, everything and everyone may or may not be co-located, thus further adding to the

complexity of the system and its subsequent design. We will now present one of these “tools” as an

example. The tool that we will present is called DELPHI. Ideawriting and Nominal Group Technique

(NGT) are two further “tools” that the reader may choose to investigate.

DELPHI is defined as “A method for getting views of people when there is not a practical means

for bringing the people together in one place and having them engage in constructive dialog. A

method for systematic development of the views of a panel of individuals, generally experts, with

regard to some issue. To minimize the influence of dominant personalities, to remove graphic

limitations, to allow input from persons who might otherwise not be able to participate, and to allow

anonymity among the panel (if desired), written responses to a sequence of correlated questionnaires

are obtained. The results of each questionnaire are fed back to the panel by the monitoring group,

which strives gradually to develop consensus among the panel members.” [Warfield, 1994] Figure 4

is a pictorial flow of the DELPHI method. The following description of the DELPHI method is given

by John Warfield [1994].

3.2.2.1 APPROPRIATE CONDITIONS FOR USE

There is a need to collect and evaluate ideas, forecasts or opinions relative to some issue. Face-

to-face participation and interactions is either not feasible or not desired. Expert opinions and

knowledge are the prime sources of information. The experts should learn from each other during the

process.

12

Figure 4 – DELPHI Method

3.2.2.2 APPLICATION AREAS

The DELPHI method is appropriate for idea generation, description and evaluation. Examples of

application include technological and social forecasting, water resource management and technology

assessment.

3.2.2.3 RESULTS

Increased understanding, clarification of positions, and explanations of differences of opinion

among experts. A supply of elements, events and possible dates of occurrence for further analysis. A

final report summarizing the process.

13

3.2.2.4 RESOURCES NEEDED

Design and monitor group of 1 to 10 people. Supporting staff to type and mail questionnaires,

receive and process results. A respondent panel of 5 to 100 people whose judgements are sought, and

who posses reasonable written communication skills. A process leader to coordinate the design and

monitor group, the supporting staff and the expert panel. Physical facilities for housing and supplying

the monitor group.

3.2.2.5 HOW THE METHOD IS APPLIED

An issue and a process leader are chosen. The design/monitor group is chosen, and the panel is

chosen. An initial questionnaire is developed and mailed to the panel. Panel replies are received and

analyzed. A revised questionnaire is mailed to the panel. The process continues iteratively until

convergence is achieved or sufficient information is obtained. A final DELPHI process report is

prepared and distributed.

3.2.2.6 IMPORTANT FEATURES AND ATTRIBUTES

Individuals in the respondent panel participate on an equal and anonymous basis. Iteration and

controlled feedback between iterations are provided. Statistical group response by aggregation of

individual opinions of the panel can often be developed. Does not require respondent panel travel or

prolonged effort at any particular time, since the time allowed typically varies from one month to one

year.

3.2.2.7 RELATED METHODS

If anonymity is not required and short-term results are essential, one may use Ideawriting,

Charette or Nominal Group Technique in place of DELPHI. When sufficient data and theory are

available, various modeling methods can be used as alternatives to DELPHI questionnaire data.

3.2.3 CONCLUSIONS AND SUMMARY ABOUT COMPLEXITY IN THE SYSTEM

As we approach the future, the systems that we build will have a tendency to interconnect and

form a system of systems. These systems will be of such complexity that the Systems Engineer will

need to minimize it in order to successfully complete the system. The complexity in design is not

limited to the design itself. This complexity will either be managed, or it will overwhelm the

individual and the system.

14

John Warfield [1994] states that the management of complexity refers to an overt, integrated

mode of operation that:

• Identifies detractors to human mental activity that diminish conceptual power.

• Recognizes the classes of detraction, and eliminates those that can be eliminated.

• Recognizes possible enhancements to human mental activity

• Acknowledges process requirements for providing such enhancements, including

role requirements and environmental requirements to support the roles and the

processes.

• Studies human performance in complex situations, and recognizes bad outcomes

from such performance and the sources and commonalties of these outcomes.

• Involves the establishment of a dedicated (maxi-min) environment that maximizes

the enhancements and minimizes the detractions through conscious environmental

design.

• Recognizes the division of labor among roles, to provide the variety of expertise

needed to implement the processes within the maxi-min environment.

• Provides for the education and training needed to fill the entire set of roles.

• Provides the resources based on the rule that even a very small percentage of the

potential losses that accrue in the event of failure can wisely be dedicated to a

systematic and thorough attack on complexity itself.

• Assigns special importance to Quality Control.

Necessary conditions for managing complexity include control of escalation of

complexity, the reduction of the cognitive burden on the designers, the elimination of the

detraction set and the provision of the enhancement set.

Specially designed processes can deal with information sets, can limit or eliminate

escalation, can reduce cognitive burden, can eliminate many detractors and can provide many

enhancements.

3.3 GENERIC DESIGN

In the design of our system of systems, our final goal will be well defined roles and

environments. The theory of generic design must provide the requisite steering to the definitions of

role and environment. Figure 5 pictorially shows this implementation.

15

Figure 5 – Theory of Generic Design

16

3.3.1 OPTIONS FIELD AND A TRIPLY-STRUCTURED QUAD

Within a generic design, the generic theory of situations and processes introduce the Options

Field as key products of the design activity. Figure 6 is a representation of an Options field as a

Triply-Structured-Quad (TSQ). It is a quad due to the four levels. These four levels are represented by

Figure 6 – Triply-Structured Quad

1. T – Target

2. C – Cluster

3. SD =Dimension

4. Θ = Option

It is triply structured due to the fact that the structure incorporates three distinct relationships. The

first relationship is the relationship among the options. This is known as “membership in a

direction.” This relationship is indicative of the options for attaining the Target fall into a collection

of sets – each of which represents one dimension. The second relationship is an “interdependent”

relationship where the independent dimensions form clusters. The third relationship is a time

preference relationship showing which time sequence choices should be made from among the

dimensions. This relationship is developed after interdependence is established so that each set of

interdependent dimensions ca be treated as a cluster.

It may be necessary to knit to a TSQ at its lowest (fourth) level another overlapping TSQ.

Figure 7 shows what a “knitted tapestry” looks like pictorially. In a tapestry, the option from the first

TSQ becomes the Design Target for the second TSQ, This “knitting” process may be repeated as

needed with additional TSQ’s to produce Design Tapestry.

17

Figure 7 – A Knitted Tapestry

The final structural portrait of the Target Design may be a Tapestry of TSQ’s arrayed

hierarchically. It is in this fashion that we will pictorially design the system of systems. It is

important to note that the top level will belong to the LSE. Under that Tapestry, the next TSQ will

belong to SE Group Leads (SEGL), the next to another SE, etc. until all TSQs are attached to a

Systems Engineer that is responsible for it.

3.4 AN EXAMPLE OF GENERIC DESIGN

It would be beneficial at this point to demonstrate the thought process for the development of a

generic design. The following is an example that will demonstrate a knitted tapestry for the

development of an Electronic Light Table (ELT) program. Thus, the target will be a completed ELT

package. As the example is read, it will be important to notice (as you become familiar with what an

ELT is), that although the Target for the example is a completed ELT program, this ELT program

could easily be an option for a higher level TSQ!

18

3.4.1 BACKGROUND FOR THE EXAMPLE

Within the United States Military, there exists a vital need for a system that is able to view

tactical reconnaissance imagery and develop usable intelligence from it. Several ground stations are

currently available to the military that can accomplish this feat.. The Military’s Ground Stations have

the ability to fully exploit the aforementioned tactical reconnaissance. An image analyst will review

the mission with the aircrew to identify assigned targets and search for targets of opportunity that

were covered by the flight by utilizing a screening tool that will allow the data to be viewed on a

computer monitor. When these targets of opportunity are observed at the screener, the analyst will

“cut out” the selected target and export the “cut out” image to an electronic light table (ELT)

program. An example would be the following; at the screening tool, an image analyst is viewing

tactical reconnaissance footage of the desert when he/she sees a tank. Wanting to get this information

to their commander, they “cut out” the tank and a small amount of the surrounding area for the

commander to view as opposed to the entire tape of reconnaissance imagery. It is this small “cut out”

picture that is exported to the ELT program. Within the ELT program, the “cut out” picture may be

fully exploited with graphics, annotation, etc to help the commander make an informed decision as to

how to utilize this exploited imagery. Within these ELT packages lies the ability to exploit imagery in

several ways. Imagery may be exploited by utilizing one of the core functions inherent to the ELT

program or by using one of the modules that enhance the capabilities of the ELT package.

Outside of the core packages within an ELT program are several modules. It should be noted at

this point, that the group of “core” functionalities themselves creates a module. Within the classes of

the ELT system, these modules would be on the same order class as the base package. An example of

a typical ELT program would be VITec ELT by British Aerospace (BAE Systems). The following are

some examples of modules for an ELT system (http://www.vitec.com, June 2000):

Image Compare – This module allows change detection and comparison of two images. Image

sources can be of any type, allowing comparison of two images taken on different days, or any

combination of visual, SAR, IR or map imagery. Images can be locked roamed, flickered and merged.

Images can be laid on top of each other and a porthole cut out of the top image for viewing down into

the bottom image, similar to an image swipe. Rub through capability can be used to remove cloud

cover from images for improved presentation.

Precision Targeting – This module is comprised of many functions. The HTML function is a

browser-based client capability that allows the user to access a subset of national or tactical targeting

capabilities. The Polynomial Registration Tool allows the user to perform a point transfer from

tactical imagery to DPPDB or NTM imagery when tactical ESD/telemetry data is unavailable. The

sensor models will be NIMA validated and certified. The National Source Selection function allows

19

the user to “Dial-an Accuracy” and select a subset of NTM or DPPDB images from a database that

provides the desired accuracy. The NTM Single Ray Intersection with Terrain Geopositioning

function allows the user to extract target geocoordinates and accuracies using a single NTM image

and DTED terrain data. Finally, the NTM Multi Image Geopositioning (MIG) function allows the

user to extract target geocoordinates and accuracies from multiple NTM images.

Special Exploitation Tool – Spectral Exploitation Tool reads imagery in NITF, SPOT,

LANDSAT and SYERS internal format. This module performs a variety of Multi Spectral and Hyper

Spectral functions such as: Spectral angle search, which locates materials in multi/hyperspectral

images that are spectrally similar to a selected sample. This is used, for instance, to find other

examples of target paint given one sample. The Spectral Angle Material Classification tool is a

supervised classification to segment an image into a set of similar materials based upon samples,

creating, for example a terrain categorization (TERCAT) map.

Import – This module allows users to quickly and easily accesses, view, manipulate and convert

data for use within the ELT program; roam and pan through CD-ROM overview image data

interactively; and use geographic coordinates to select a subset of the map. In addition, this module

allows users to save the map data as an 8-bit Pseudo Color file, significantly reducing the amount of

disk storage required for each map.

Search – This module expands the capabilities to provide fast, smooth, flicker-free, tear-free,

roam and pan of extremely large images. The user can ingest full frame national imagery, smoothly

roam images at full resolution, conduct broad area searches at user defined rates, drop markers to

target additional analysis, and create any size chips on the fly.

OrthoMosaic – OrthoMosaic will perform the following tasks, in any combination: Build a

Digital Terrain Model (DTM) from overlapping images (Automatic Terrain Extraction (ATE)),

Register overlapping images together (Triangulation), Rectify an image (Ortho Rectification) and

Mosaic images together. This module is a background process that automatically triangulates,

rectifies, and extracts terrain, There is no user interaction other than selecting files to rectify.

Register/Mosaic – This module allows tactical users to warp or rubbersheet aerial

reconnaissance images to maps (ADRGs) or other images and to quickly determine estimates of

ground locations and their coordinate points on the image. As the two images are interactively

merged, a single window on the screen shows the combined features of both: the satellite or aerial

reconnaissance image along with the map’s latitude and longitude or Universal Transverse Grid

(UTM) coordinates. After loading the images into the module, the user is quickly able to pick features

common to both images (roads, forest boundaries, intersections, etc.) and use them as control points

to warp or register one image to the other.

20

The core packages of the ELT software are the standard features that come with the software

when purchased. The following are some of the features found in a typical VITec ELT package

(http://www.vitec.com, June 2000):

Enhance – Execute interactive histogram adjustments, region of interest (ROI) processing, look

up table (LUT), modifications and digital filtering. Create an unlimited number of ROIs for selective

image enhancement and manipulate them before applying to source image. Includes

brightness/contrast, color enhancement, sharpness, edge enhancement, etc.

Paint/Airbrush – Perform digital photo retouching, add or delete features to existing maps or

images. New roads and features may be added and outdated data deleted.

Annotate – Add, edit or overlay text, icons and graphics on the image then manipulate the

annotations independent from the underlying image. Annotations may be saved with or without the

image. Certain templates are available.

Measure – Perform Mensuration for all sensors modeled by the NIMA Ruler software. Also

perform mensuration on all NITFs format imagery not modeled by NIMA Ruler. Supports the adding

of math models to support mensuration of other sensors.

Chip – Chip to scale. Chip to map scale. Chips can be saved at resolutions different from the

source imagery.

Grid – Primary/Secondary grid, User selected Coordinate Type, Auto/User defined Spacings,

Interactive Line Thickness/Color Control, Interactive Font Size/Color Control. Grid types include

Lines, Dashed Lines, Ticks and Reseaus.

Save – Write imagery to a variety of file formats, including NITFS, GIF, JPEG, TIFF, Sun

Raster, BMP, XWD, etc.

Print – Supports most printers with easy to use application interface. Print module incorporates

NIMA’s printer lookup tables for Kodak, Cannon and HP printers. These look-up tables match the

hardcopy output to the color values on the screen, providing a “what you see is what you get”

capability for hardcopy outputs.

Cut/Paste – Cut out potions of the image and incorporate into the source image of a different

image, optionally creating drop shadows. Allows maps to be added to images and vice versa.

3.4.2 APPLICATION OF ELECTRONIC LIGHT TOOL TO GENERIC DESIGN

Figure 8 depicts the “Two-quad Tapestry” concept (Kaake, 2001) applied to Military Intelligence and

Electronic Light Table Programs.

21

Figure 8 – Two-Quad-Tapestry

The general format for an “Option Field” Design Layout is depicted in Figure 9. [Warfield, J.

1994]

Figure 9 – Option Field Technique

22

The tables below are an “Option Field Representation” of the target “Electronic Light Table”. Due to

space constraints, the layout will not be as in Figure 9, but will be broken up. Should the reader

desire, Tables 1-4 could be constructed to assume the format of Figure 9.

CLUSTERS SOFTWARE HARDWARE SUPPORT

Table 1 - Target: Complete Electronic Light Table System (Clusters)

SOFTWARE CLUSTER

DIMENSION Pixel

Enhancement

Picture

Enhancement

Targeting Annotation Intel Tools

OPTIONS 1. Brightness/

 Contrast

2. Color

Enhancement

3. Color Shading

4. Sharpen

5. Smooth

1. Zoom

2. Rotate

3. Roam

4. Crop

1. Lat/Long

2. MGRS

3. UTM

1. Text

2. North Arrow

3. Circles

4. Lines

5. Squares

6. Other Shapes

1. Mosaic

2. NITF Levels

3. Mensuration

Table 2 - Complete Electronic Light Table System (Individual Dimensions and Options -

Software)

HARDWARE CLUSTER

DIMENSION Physical Table Camera Peripherals

OPTIONS 1. Auto

2. Manual

3. Fluorescent

4. Incandescent

5. Backlit

1. Digital

2. 35 mm

3. Auto

4. Manual

1. Maps

2. Ruler

3. Pictures

Table 3 - Complete Electronic Light Table System (Individual Dimensions and Options -

Hardware)

23

SUPPORT CLUSTER

DIMENSION On Site Phone Informational

OPTIONS 1. Warranty

2. FSR

3. Software Help

1. FSR

2. Help Desk

3. Automated FAQ

4. Warranty

1. User Guide

2. Software Help

3. Warranty

Table 4 - Complete Electronic Light Table System (Individual Dimensions and Options -

Support)

3.4.3 RELATIONSHIP ANALYSIS

Pictorial representations can be developed to further organize the brainstorming or “brain-

writing” process. The Figure 10 shows the clusters within the Physical Design dimension. Organizing

using the “Option Field Method” can lead to interactions the group may or may not have thought of

without the graphical representation. (Kaake 2001)

Figure 10 - Identification of Dimensional Cluster

24

Interactions within the Electronic Light Table, as previously defined, were developed using the

ISM (Interpretive Structural Modeling) process. Results are depicted in the following figure. Each

dimension within the cluster interacts or interfaces with every other dimension or component within

the cluster. Flexibility within this design allows for all components to interact simultaneously or with

selected components or a single component running independently. Effective and efficient design

processes will improve situational awareness, Intelligence Preparation of the Battlefield (IPB)

process, and R&S (Reconnaissance and Surveillance) planning. Further, the definition of success for

the ELT will be defined through CONOPS (Concept of Operations) and system Mission Profile (MP)

development.

3.4.4 EXAMPLE CONCLUSIONS

Utilization of the Option Field Method will allow for the effective “partnering” of all

applications to the ELT program. The interrelationships between the software, hardware and support

clusters as well as the infrastructure of the ELT are made sounder by the understanding of the

interactions between the clusters. This understanding will be useful when the ELT is incorporated for

use in another program. The Generic Design Process will allow for a Generic Process Flow when the

ELT itself is utilized. (Kaake and Whittington, 2001) The conclusion gained through this work is that

the Generic Design Process allows an understanding of the final product such that interactions of the

product are designed to allow flexibility to accommodate change prior to the completion of the

product; and, once completed, easier modification should conditions warrant.

3.5 DESIGN CONCLUSIONS

When designing the system of systems, the LSE must keep in mind how complex the system

will become. Obviously, there are varying degrees of complexity, however, how it is managed is of

utmost importance. The complexities involved in engineering a system of systems are so great, that

without a template for design and implementation, the chances of system success are limited. It is in

the understanding of the relationships between the lower level systems that system integration may

successfully occur. This is done by any number of methods, specific to this chapter is the Option

Field Method. When the system’s complexity has been managed and its relationships understood

from its lowest level to its highest (through an option field) the design of the system will be complete.

25

CHAPTER IV

MANAGEMENT CONCERNS FOR THE SYSTEMS ENGINEER

There are times that every Engineer will shy away from Program Management tasks. For the

most part, this repulsion is due to a dislike for the business side of a contract versus the technical side

of the contract. However, a Systems Engineer, particularly a Lead Systems Engineer, will inevitably

find themselves performing some subset of these tasks. In this chapter, we will first look at the

intersection of the professions of Systems Engineering and Program Management to determine what

areas are whose responsibility and then we will examine specific concerns that, although are normally

considered Program Management responsibility, drastically affect how a Systems Engineer manages

the design and development of the system of systems.

4.1 SYSTEM ENGINEERING AND PROGRAM MANAGEMENT: ROLES AND

RESPONSIBILITIES

Long before the age of digital cameras, scanners and high speed Internet access, there were

Electrical Engineers. It did not take Electrical Engineers long to discover that by manipulating relays

and switches and the like, they could alter/adjust the output of the piece of equipment that they were

working on. As this practice became more and more prevalent, it became quite clear that there was a

distinct need for Engineers that could trace electrons around a circuit or system and Engineers that

could manipulate or “program” the electrons. Thus the field of Electrical Engineering split and gave

way to the field of Software Engineering. Now, if someone says that they are a Software Engineer we

feel quite comfortable in pigeonholing their job function. We may not be aware if they are a C++

programmer or a UNIX programmer or a JAVA programmer, but we have a good grasp as to their job

function. However, if someone says that they are a Program Manager or a Systems Engineer, an

immediate job description does not come to mind. If someone claims to be a Systems Engineer we

could wonder: “Are you a Requirements Engineer?” “Are you an Integration, Test and Verification

(IT&V) Engineer?” “ Are you a Field Engineer?” The questions could go on and on. The list of

questions that one could raise for a Program Manager is just as large. When it comes to the job

description of Program Managers and Systems Engineers, particularly Lead Systems Engineers, the

lists are so diverse that overlap between the lists is unavoidable. The overlap between the two job

functions creates a very large gray area of responsibility. This portion of the chapter will present

guidelines to help the project stakeholders decide on a synergistic approach to addressing the

intersection of the professions.

26

4.1.1 COMPARISON OF SYSTEMS ENGINEERING TO PROJECT

MANAGEMENT

A Guide to the Project Management Body of Knowledge (PMI 1996) (PMBOK), has been used

by the Project Management Institute as a basis for certifying over 6,800 Project Management

Professionals worldwide. Information gained from this book will represent the Project Management

body of knowledge referenced in this section. The PMBOK recognizes that the Project Management

body of knowledge intersects with two other bodies of knowledge as shown in Figure 11, those

bodies being Application Knowledge and Practice and General Management Knowledge and

Practice. It is the intersection of Project Management and the application area, Systems Engineering,

which is the focus of the comparison. It is recognized that General Management Knowledge and

Practice impact both Project Management and Systems Engineering, but that intersection is not

addressed in this paper. [Kauffman, 1998]

Figure 11 - Relationship of Project Management to Other Management Disciplines

 Table 5 compares the nine Project Management knowledge areas defined in the PMBOK to

the major processes defined in Each of the following Systems Engineering standards: IEEE Std 1220-

1994, IEEE Trial-Use Standard for Application and Management of the Systems Engineering Process

27

(IEEE 1995) and EIA Interim Standard, Systems Engineering, EIA/IS-632 (EIA 1994). The filled-in

blocks indicate where there is a strong correlation between activities identified in the PMBOK and

those in IEEE 1220 and EIA 632. [Kauffman, 1998]

PMBOK

IEEE 1220

Pr
oj

ec
t I

nt
eg

ra
tio

n

Pr
oj

ec
t S

co
pe

 M
an

ag
em

en
t

Pr
oj

ec
t T

im
e

M
an

ag
em

en
t

Pr
oj

ec
t C

os
t M

an
ag

em
en

t

Pr
oj

ec
t Q

ua
lit

y
M

an
ag

em
en

t

Pr
oj

ec
t

H
um

an

R
es

ou
rc

e

M
an

ag
em

en
t

Pr
oj

ec
t

C
om

m
un

ic
at

io
ns

M
an

ag
em

en
t

Pr
oj

ec
t R

is
k

M
an

ag
em

en
t

Pr
oj

ec
t

Pr
oc

ur
em

en
t

M
an

ag
em

en
t

Requirements Analysis

Requirements Baseline

Validation

Functional Analysis

Functional Verification

Synthesis

Physical Verification

Systems Analysis

Control

EIA 632

Requirements Analysis

Functional

Analysis/Allocation

Synthesis

Systems Analysis and

Control

Table 5 - Comparison of Project Management and Systems Engineering Bodies of Knowledge

Clearly several of the IEEE 1220 and EIA 632 processes correlate to the scope, quality and risk

knowledge areas of the PMBOK at this level. We further see that there is correlation, at some lower

28

level, in the integration, time and communications management areas. The Systems Engineering

manuals show almost no correlation with the cost, human resource and procurement management.

Based solely on this analysis it is obvious that the Project Manager has the primary responsibility for

these areas. However, the Systems Engineer, especially the Lead Systems Engineer, should not

completely disregard these areas. It is not difficult to understand how the Lead Systems Engineer

could have a valuable input to the hiring of a new Engineer, even though the human resources

management is in the domain of the Program Manager. Even though the Systems Engineer is not

responsible for these areas or other unmentioned areas, there is no doubt that they should understand

these areas as they will undoubtedly affect other areas that the Systems Engineer is responsible for.

4.1.2 THE INTERSECTION OF SYSTEMS ENGINEERING AND PROGRAM

MANAGEMENT

The previous section identified several high-level areas where Program Management and

Systems Engineering intersect. In this section we will take a closer look at each area that is a

supposed intersection between the two fields and determine if each section truly is an overlap, i.e.

each group could manage/perform the section equally; or which of the two professions dominates

when the lower level processes are examined.

4.1.2.1 INTEGRATION MANAGEMENT

The PMBOK defines three processes under Integration Management: project plan development,

project plan execution and overall change control. The only one of these three that directly correlates

to a Systems Engineering process, Configuration Management (CM), is overall change control as

defined in IEEE 1220 Control process and the EIA 632 Systems Analysis and Control Process. “Both

the Project Management and Systems Engineering knowledge areas are concerned with ensuring that

changes are beneficial and properly reflected in all other activities. The tools and techniques to

carryout these activities appear to be comparable in both professions; therefore, neither can claim to

dominate change control or configuration management.” (Kauffman, 1998) The point alluded to by

Mr. Kauffman is well taken, either profession may take the responsibility of configuration

management and, as long as this responsibility is agreed to, the configuration of the system (i.e.

system of systems) will be managed. However, due to the importance of maintaining the system

configuration from a technical standpoint, especially in the realm of software CM, it is in the Systems

Engineer’s best interest to take a very active role in this process. If the role in question is that of a

29

Lead Systems Engineer, it is strongly advised that he/she assume the management responsibility role

for system configuration management (see Chapter 4).

The remaining areas of Integration Management, project plan development and project plan

execution, have no corollaries in the System Engineering processes and are, therefore, viewed as

being exclusive to the Program Management profession.

4.1.2.2 SCOPE MANAGEMENT

The PMBOK recognizes that there are two aspects to Scope Management: product scope and

project scope. The PMBOK recognizes that a special applications area such as Systems Engineering

should manage product scope. The primary focus of the PMBOK is therefore on project scope.

However, project scope is to multi dimensioned to attribute solely to Project Management; there is

sufficient overlap in this area to examine its individual constituents. Figure 12 illustrates how certain

Systems Engineering processes relate to three processes defined in the PMBOK Scope Management

knowledge area: initiation, scope planning and scope definition.

Figure 12 - Scope Management Process Overlap with Systems Engineering Processes

30

The first area of overlap is between the initiation process of the PMBOK Scope Management

and the Requirements Analysis process of IEEE 1220 and EIA 632. These processes all require the

definition of project or enterprise constraints that limit options of the project or system. [Kauffman,

1998] Between all of these manuals, there are no decisive conclusions as to who the dominant

profession should be when dealing with the initiation process. As alluded to before, the Systems

Engineer and the Program manager should strive to work together at the program outset to assure that

there is not a duplication of efforts.

The next area of overlap is the product analysis subprocess of the PMBOK scope planning

process with several major processes of Systems Engineering Requirements Analysis, Functional

Analysis, and Synthesis. The PMBOK touches only lightly on product analysis when discussing

scope planning while the Systems Engineering standards go to great depth in defining the processes

and subprocesses to perform these tasks. Obviously this area of knowledge is dominated by the

Systems Engineering profession.

Another area of overlap within scope planning is between the two PMBOK subprocesses,

cost/benefit analysis and alternatives identification, and IEEE 1220 trade studies within the Systems

Analysis and Control process. These processes are all similar, with neither profession dominating the

area. Although the processes are similar, if the alternative in question is technical in nature, Systems

Engineering should take the lead, whereas Program Management would likely be the best candidate

for the lead in a cost/benefit analysis action.

The final area of intersection in Scope Management is the PMBOK’s use of the Work

Breakdown Structure (WBS) as a tool for scope definition. A strong correlation exists between the

WBS and the IEEE 1220 System Breakdown Structure (SBS) developed in the Physical Verification

process. The primary difference is that the PMBOK defines several WBS structures, including

product-related, as well as, contractual and organizational structures. However, it would appear that,

at a minimum, the SBS should serve as an input to the WBS to avoid duplication of work or the use

of different product structures that may only serve to confuse or complicate the efforts of the project

team. [Kauffman, 1998]

4.1.2.3 QUALITY MANAGEMENT

According to the PMBOK, there are three aspects to quality management: quality assurance,

quality planning and quality control. If the PMBOK and IEEE 1220 and EIA 632 are examined

closely, as in Figure 13 it is clear that the Systems Engineering standards deal with aspects of quality

planning and quality control but do not address quality assurance as defined by the PMBOK. Due to

this, we will assume that quality assurance is in the domain of Program Management.

31

Figure 13 - Quality Management Process Overlap with Systems Engineering Processes

When the subject of Quality Planning is broached, the discussion centers on the utilization of tools

and techniques such as benefit/cost analysis, benchmarking, flowcharting and design of experiments.

The Systems Engineering standards reference the use of Technical Performance Measurement (TPM)

as a technique to plan and track the evolving performance of the system design against key

performance requirements. Both professions have the tools and techniques in place to perform

Quality Planning. However, due to the diversity of the tools and techniques, it is imperative that the

project have early coordination and planning to develop the most effective plan for the system (of

systems). This does not necessarily mean that the Systems Engineering method is chosen or the

PMBOK method is chosen; it is possible, moreover probable, that the system will reap the benefits

from a tailored approach between the two methods. Once again, this tailoring must be done and

agreed to by all parties early in the development of the system. Both product results and process

results of a project are dealt with in the quality control process of the PMBOK Quality Management

knowledge area. The PMBOK covers a wide range of quality topics including: inspection techniques,

32

rework decisions, control charts, Pareto diagrams and statistical sampling to drive process

adjustments. Inspection techniques are handled at the process level, however, by the Systems

Engineering standards. Several subprocesses within the IEEE 1220 Control process, systems analysis

and the collection of test data, also address inspection techniques. “One aspect of Systems

Engineering related to quality control, the assessment of product performance against Technical

Performance Measurements, can be viewed as a complimentary technique that should be used within

the PMBOK quality control process.” [Kauffman, 1998] The Systems Engineering standards provide

a tremendous level of detail regarding the processes of Requirements, Baseline Validation and

Functional Verification. The PMBOK merely defines these tasks as inspection tasks. Obviously the

detail that the Systems Engineering manuals provide points to a decided domination of this particular

aspect of inspection by Systems Engineering.

Within the Quality Control arena, Systems Engineering and Program Management combine to

offer various levels of description and/or instruction. As demonstrated, the expertise varies from area

to area. Further, as mentioned before, it is advisable to avoid duplication of efforts with open dialog at

the outset of the program. This being said, management and production of a technical product

requires a technical knowledge that Program Management may or may not have. The Lead Systems

Engineer of the system must assume the technical management of the quality of the product (see

Chapter 5).

4.1.2.4 RISK MANAGEMENT

There are four major subprocesses defined in the PMBOK under the definition of Risk

Management: identification, quantification, response development and response control. It is clear

that the Systems Engineering standards (IEEE 1220 and EIA 632) addresses these concerns, although

they are referred to by a different name as seen in Figure 15. The Systems Engineering standards do

not, however, go to the detail that the PMBOK does in describing how to handle these processes.

Therefore, as seen in Figure 15, these processes are Program Management dominant, though the

Systems Engineering processes should provide significant input when planning system Risk

Management. The following is a pictorial description (Figure 14) of the Risk Management cycle as it

pertains to all aspects of a system.

33

Figure 14 - Risk Management “Life Cycle”

4.1.2.5 TIME MANAGEMENT

The Systems Engineering processes overlap with the PMBOK Time Management in three areas.

First, the PMBOK process of activity sequencing overlaps the Master Schedule process as defined in

the Systems Engineering standards. Secondly, the calendar based Systems Engineering Detailed

Schedule overlaps with the PMBOK schedule development processes and finally, the PMBOK’s

schedule control section overlaps/corresponds to the IEEE 1220 progress measurement processes. In

all three areas, the PMBOK provides far more detailed tools and techniques than the System

Engineering standards. The activities covered in the Systems Engineering processes represent only a

small portion of the activities defined in the PMBOK. Two further processes defined in the PMBOK:

activity definition and activity duration estimating do not have corresponding processes in the

Systems Engineering standards. Clearly, Program Management dominates the Time Management

body of knowledge.

34

Figure 15 - Risk Management Process Overlap with Systems Engineering Processes

4.1.2.6 COMMUNICATIONS MANAGEMENT

One aspect of PMBOK Communications Management, information distribution, overlaps with

the Systems Engineering Control process, data management. These processes are nearly identical;

therefore neither profession can claim dominance. The three remaining processes under the PMBOK

Communications Management: communications planning, performance reporting and administrative

closure are without comparable processes in the Systems Engineering processes. [Kauffman, 1998]

4.1.2.7 SUMMARY OF KNOWLEDGE AREAS

In summary of this section, there are three areas of knowledge overlap between Systems Engineering

and Program Management: those where one profession dominates the other, those where the

knowledge areas compliment each other and finally, those where there is a duplication of effort.

Table 6 summarizes the distribution of knowledge areas.

35

Project Management Complementary (C) or Duplicative

(D)

Systems Engineering

• Project Plan Development

• Project Plan Execution

• Overall Change Control /

Configuration Management (D)

• Project Scope

Management

• Define Project or Enterprise

Constraints (D)

• Conduct Cost / Benefit Analysis

and Alternatives Identification /

Trade Studies (D)

• Requirements Analysis

• Functional Analysis

• Synthesis

• Technical Scope

• Time Management

• Cost Management

• Quality Assurance

• Process Quality Control

• Checklists / Select Technical

Performance Measurements (C)

• Inspection / Assess TPMs (C)

• Inspection / Asses Systems

Analysis and Collect Test Data (D)

• Requirements Baseline

Validation

• Functional Verification

• Physical Verification

• Human Resource

Management

• Communications Planning

• Performance Reporting

• Administrative Closure

• Information Distribution / Data

Management (D)

• Risk Management

• Procurement Management

Table 6 - Summary of Knowledge Area Dominance by Profession

It may appear on the surface that these two groups, although different, share many of the same

qualities, enough so that one might argue why there are two groups at all. Closer examination,

however, reveals that there is a need for the two distinct groups. Project stakeholders can not afford to

use anyone other than the professionals best equipped with the proper body of knowledge to handle

the job. When dealing with or being part of one of these two groups, the most effective use of

knowledge is simple -plan! If responsibilities are delegated early so that the appropriate professionals

36

are utilized in a way to maximize their body of knowledge, the system will surely flourish! “Proper

planning by project stakeholders can create a beneficial synergy between Project Management and

Systems Engineering rather than conflict and duplicative efforts.” [Kauffman, 1998]

4.2 TRAINING THE TECHNICAL KNOWLEDGEBASE

The second “management” issue that we choose to discuss is that of training the Systems

Engineers. Doubtless, this is one of the most overlooked aspect of Systems Engineering. Contrary to

popular belief (especially that of graduating college seniors), a college or advanced degree, while

important and impressive, is merely the beginning of the professional training required for a fully

groomed Systems Engineer.

Jerry Watts and Brian Mar performed a study in 1996 asking professionals in the Systems

Engineering field what further training was required for a person to be come a “complete” Systems

Engineer. Surveys were sent to between March 19, 1996 to May 15, 1996 to various industry leaders

with a response rate of 47.2%. The importance of 23 types of skills and knowledge for Systems

Engineers was categorized in a range from “unnecessary” to “critical.” Responses to the survey were

provided on a Likert-like scale with 1 corresponding to “unnecessary,” 2 corresponding to “useful,” 3

corresponding to “important,” and 4 corresponding to “critical.” Table 7 displays the results of their

survey.

Further, their survey asked the respondents how many hours of training their organizations

offered for various types of skill and knowledge. To calculate the mean and standard deviation for the

results, the answer code for each answer category was replaced by the center point for the answer

category so that 4 was used for “8 hours or less;” 24 used for “between 8 and 40 hours;” 120 was used

for “between 80 and 160 hours;” and 200 was used for “more than 160 hours.” Table 8 displays these

results.

Watts and Mar reached an interesting conclusion. “The survey showed no significant

relationship between the hours of training offered and the emphasis placed on that type of skills and

knowledge. This lack of a relationship is curious. There are several possible explanations. On possible

explanation is that the Systems Engineers being hired already posses the desired skills and

knowledge. A second possible explanation is that companies do not adequately assess the importance

of various types of skills and knowledge in planning their training programs.

37

Skills and Knowledge Mean Standard

Deviation

Basic Problem Solving 3.720 0.458

Development and Management of Requirements 3.640 0.638

Teamwork and Communication 3.600 0.577

System Optimization (Trade Studies and Decision Making) 3.520 0.714

System Interface Definition 3.480 0.510

Mission Analysis and Design 3.400 0.816

System and Component Integration 3.360 0.638

Architecture Development 3.320 0.690

Risk Analysis and Management 3.320 0.852

Systems Engineering Processes 3.320 0.852

Breadth of Experience with Different Systems 3.080 0.640

System Simulation and Modeling Skills 3.040 0.676

Design Techniques 3.000 0.707

Test and Verification Design and Management 3.000 0.764

Table 7 - Types of Skills and Knowledge Ranked by Decreasing Importance

A third possible explanation is that some types of skills and knowledge are easier to acquire,

thereby requiring less training time. A fourth possible explanation is that the training is intended for a

broader audience than Systems Engineers; hence, the amount of training offered for any category

should correlate with the with the overall emphasis placed on the category by all interested parties.

This is reasonable for general engineering skills and knowledge such as general problem solving and

product design, but does not explain why there is no relationship for skills and knowledge that are

typically reserved for Systems Engineering, such as the definition and management of requirements

and definition of interfaces.” [Watts and Mar, 1996]

These statistics lead the reader to believe that companies do not adequately assess the

importance of various types of skills and knowledge planning in their training programs. It is of

further interest to note that some programs that companies do have to train are programs that are

overlapping responsibility with Program Management as discussed previously in this chapter (Risk

Assessment, Project Management Processes, etc.).

38

Skills and Knowledge Mean Standard

Deviation

Tools and Automation 66.1 82.8

Project Management Processes 63.3 16.0

Mission Analysis and Design 46.6 68.6

Design Techniques 46.4 66.3

Teamwork and Communication 44.5 56.0

Systems Engineering Processes 43.5 53.7

Engineering Specialties (Logistics, Maintainability, Safety, etc.) 40.3 66.0

Architecture Development 31.3 48.7

Development and Management of Requirements 27.7 41.9

System Optimization (Trade Studies and Decision Making) 26.1 41.329.2

Test and Verification Design and Management 24.9 47.6

Human to Machine and Human to Human Interface Design 24.6 41.8

Basic Problem Solving 24.4 46.7

Present and Predicted Technology 23.5 41.0

System Simulation and Modeling Skills 22.8 40.1

Risk Analysis and Management 22.1 47.0

Breadth of Experience With Different Systems 21.7 41.7

System Interface Definition 19.3 18.8

Depth of Knowledge in a Specific System 19.1 41.8

Engineering Economics 17.6 26.4

Capture of the Design Data Base 16.7 26.4

Commercial and Military Standards 16.7 14.0

System and Component Integration 14.3

Table 8 - Hours of Training Offered for Each Type of Skills and Knowledge, Ranked by Mean

As a side note, this would further emphasize the fact that Program Management and Systems

Engineering Management are not sitting down at the outset of a program to discuss roles and

responsibilities. As a Systems Engineer in a System of Systems, current understanding of the

technology, interface definition, network architecture, etc. are all subjects that have the ability to be

quite dynamic. Keeping the technical knowledgebase trained is synonymous with success whether the

39

Systems Engineer in question is the Lead SE in charge of the system and other Systems Engineers

(Technical Knowledgebase) or the SE new to the program that is “low man on the totem pole.”

4.3 SCHEDULING

When dealing with schedule, most engineers recognize it as a necessary evil that is best left to

Program Management. However, as Lead Systems Engineer and to a lesser extent, Systems

Engineering for the system, we must understand that we are ultimately responsible for the schedule.

Now, when we say that Systems Engineering is responsible for the schedule, we are not talking about

the day-in day-out maintenance of the schedule; we are discussing the responsibility for the

performance of the work that causes the schedule to be what it is. As such, a Systems Engineer must

be aware of how technical decisions that are made will have a “ripple down” effect on the schedule.

John Donne the famous Elizabethan poet once remarked, “No man is an island, entire of itself…” The

same can be said of Systems Engineers (particularly Lead SEs) who only worry about the technical

aspects of a program, i.e. there is more to the system than the technological side. It is granted that the

main thrust of a System Engineer should be the technical performance of the system (of systems)

however, a Systems Engineer must understand how any and everything affects the system. Schedules

sometimes cause the system to be dynamic and at other times may be used to understand the flow of

how the system will come together. Regardless of the application, the Systems Engineer should use

schedules as a tool to help them accomplish their goal.

As such, there are several versions of electronic scheduling programs available. Most large

companies use Microsoft Project  to do their scheduling. Whatever software the Systems Engineer’s

company uses, he/she should become very familiar with it in order to utilize it as a tool as mentioned

above. Figure 16 shows an example of Microsoft Project  utilized by the author to help facilitate the

writing of this paper.

40

Figure 16 - An Example of Microsoft Project  Scheduling Tool

4.4 BUDGET

Another tool available for the System Engineer to use is also thought of as a Program Manager’s

responsibility – budget. Although responsibility for the budget falls to the Program Management

Body of Knowledge, the Systems Engineer should not hesitate to utilize it to his/her advantage. Most

companies have a type of budgeting/accounting system that they utilize. It is beyond the scope of this

paper to discuss all of these different programs, however, the Systems Engineer should become

familiar with the reporting process that his/her company uses as it will ultimately help them with their

job.

Occasionally, Program Management will ask a Systems Engineer (usually the Lead SE) for help

in estimating budgets for the program. How the Systems Engineer will bid these efforts will vary

wildly from system to system. It is the author’s opinion that, as a general rule, the Systems Engineer

should do three things after they have estimated the scope of the work and the amount of effort

required; 1) discuss the results with the people doing the work. This will almost always influence the

outcome. It is not uncommon for the people who are doing the actual work (programming, hardware,

specialty engineering, etc.) to have a though different from the Systems Engineer that may cost more

time or save more time. 2) When the discussion with the people performing the work is complete, talk

to their supervisor. Usually, this will be a person in a lead role, i.e. software team lead, etc. Verify

what was discussed with the people that work for them in step one. Finally 3) apply an engineering

“safety factor” of 20%. The number that is derived should be as good an estimate as is possible.

41

When this number is returned to Program Management, it should be firmly stood on as the

Engineering bid. Most Program Managers take the Systems Engineer’s input and incorporate it into

their final bid. However, sometimes Management or the Customer will “challenge” Engineering to

reduce cost. Depending on the system, the Systems Engineer may be able to help or, they may not.

The key is to understand what the job can be done in such that a quality, final product is delivered to

the customer. If asked to go below the “comfort zone”, the Systems Engineer should stand firm.

Delivering a quality product is a top priority of the Systems Engineer.

The bitterness of poor quality still remains after the sweetness of the low cost is forgotten.

 -Unknown

4.5 CONCLUSIONS ABOUT PROGRAM MANAGEMENT RESPONSIBILITIES

FOR THE SYSTEMS ENGINEER

As discussed in this chapter, the Systems Engineer has responsibilities that overlap with

Program Management. These gray areas may change from program to program. The ability of the

Systems Engineering and Program Management to embrace this overlap and turn it into an advantage

will largely influence the success or failure of the program. Key planning meetings at the outset of the

program is the best place and time to discuss these overlaps and agree on who has what responsibility.

Further, even in areas such as budgeting and scheduling, where Program Management is the

responsible party, the Systems Engineer should understand and utilize these tools to his/her advantage

and, ultimately, the program’s advantage.

Training continues to be the chance that Systems Engineering has to stay “on top of the game.”

With rapid technology development occurring today, staying up to date will not only improve the

Systems Engineer, it will improve their ability to make a product. It should be noted that companies

differ on the roles that they wish for their Systems Engineers to play. Training as to what is expected

from the SE as well as what company protocol to follow may be as important to the company as the

degree earned by the Systems Engineer!

Of course, this chapter has not been all-inclusive as to what Program Management

responsibilities the Systems Engineer could assume/utilize. However, hopefully it brings awareness to

the fact that most engineering but especially Systems Engineering can not be a technical island unto

42

itself. A Systems Engineer is responsible for just that – the entire system, technically. He/she should

utilize everything within their grasp to perform this role more effectively. As for the gray areas of

overlap, plan wisely, early!

43

 CHAPTER V

QUAILTY ASSURANCE AND THE SYSTEMS ENGINEER

Quality can not be inspected into the system.

 -Robert Morland

5.1 SOME THOUGHTS ON QUALITY ASSURANCE

“A lot of people seem to think that God was the first quality professional, and those who have

followed Him in the business of judging what is good and what is not good do so by divine right.

They know that there are two types of people, the good and the bad, and that the good get to decide

which is which. The purpose of having an independent quality department is to get away from this

kind of thinking – to limit such choices to those who have nothing to gain from the decision.”

[Crosby, 1980] Quality Assurance is not just any facet of building a system, it is the only facet. All

actions taken with the development of a system of systems require Quality Assurance planning in the

initial stages and presence during all stages. For some reason, people that work and develop systems

have come to see Quality Assurance as the “bad guy,” that they are out to get them on all manners of

technicalities. Throughout this chapter, we will discuss how very important Quality Assurance

personnel are, not only to the final product but also to the bottom line. There is no excuse for having

errors or mistakes in the system (of systems). Hard-working, dedicated professionals committed to

exercising personal integrity make having a goal of zero defects possible. “You [a company] can get

rich by preventing defects. You [a company] can never make much by simply “assuring” or

“controlling.” Police officers try to keep things under control. Lawyers often work at prevention. You

have never seen a rich policeman. There are a lot of rich lawyers.” [Crosby, 1980] In a system of

systems, quality assurance becomes doubly important. Not only is the Systems Engineer concerned

about the quality of the entire system, they must be concerned with the quality of the individual

components of the system. In addition to the ethical requirements to create the system to the best of

their technical ability, there is a potential monetary benefit for the Systems Engineer’s company as

well!

44

5.1.1 QUALITY DEPARTMENT FUNCTIONS

5.1.1.1 INSPECTION

At the heart of every quality program is data collection through mechanical and/or visual

inspection, which permits the evaluation of a product or service status. Phillip Crosby came up with

three things that all measurements should have in common. First, they are planned evaluations

conducted in a planned manner for a planned reason; second, they are conducted by professionally

trained inspection personnel; and third, the inspection personnel are organizationally separate from

those organizations they are inspecting. Inspection is truly the first line of defense in a quality

program. Remember that an inspector is not truly an inspector unless the inspection is independent

and last. Changes made after the inspection void the inspection. Any change, even if due to the result

of an inspection, requires a re-examination by the appropriate quality personnel. Remember that

quality is everyone’s duty. It is a constant effort by all to create the best possible product. Without

doubt, an inspector will miss an occasional error with a system. It is up to the entire team to ensure

that the number of errors that an inspector has to find is minimal to minimize the number of final

errors (hopefully to zero). Remember the quote at the beginning of the chapter-“Quality can not be

inspected into the system.” Inspection is the final step in the Quality chain not the first.

5.1.1.2 TESTING

Today, most quality decisions are made based on the results of some type of functional testing of

the product in some stage of development. In addition to the people who perform the actual testing,

Test Engineers are employed to assist in developing test equipment concepts and establishing testing

procedures; dependent upon the size of the program, these Test Engineers are usually Systems

Engineers with specific knowledge. The only purpose of testing is to determine if the system will

perform to the basic requirements document laid out in the contract. As a word of caution to Systems

Engineers who might be performing the role of Test Engineer for the first time, there is an important

pitfall to avoid. If, as the Test Engineer, the system passes its tests, the result will be a resounding

“Ship it!” However, should the report be negative, the result will be “Test it again.” Whenever the

product passes, it is acceptable. For that reason, Test Engineers must write test procedures that require

exact test results.

The biggest problem in testing today is software. “The computerized test equipment naturally

requires computer programs that direct, and for the most part, conduct the test. There is no reason

why these programs themselves should not be considered products and should not be required to meet

45

the qualification test requirements. Testing equipment and software now represent a major financial

investment, sometimes larger than the development cost itself. It is wise to make certain that this

important function is well controlled.” [Crosby, 1980] We have tested hardware for quite some time

and, although equally important, we have developed processes that we are comfortable with. We are

now going to discuss different ways of testing software, however, it should be noted that all of these

tests are derivatives from some type of hardware testing. The result is a rather nice system of testing

that is applicable for all aspects of the system. The Systems Engineer merely needs to tailor these

tests to the system and/or testing at hand. The implementation of these tests may vary depending on

what you are developing and what change management system you are using. The tests can even vary

depending on the customer you are trying to satisfy! Some of these tests are performed with Quality

Assurance on hand, the others are performed to assure that when Quality Assurance is on hand, things

go very smoothly.

5.1.1.2.1 UNIT (MODULE) TESTING

Unit testing is performed at the module level of the system (or software). This is the most basic

unit of the system. In a system of systems, this testing not only goes down to the individual system

level, but to the piece parts within the individual systems. Often, software developers refer to unit

testing as module testing. As with anything problems tend to “snowball” becoming bigger and bigger

the longer they go unheeded. Ideally, enough time is scheduled to perform unit testing prior to

incorporating the modules into the whole. Too often, however, teams develop the module but fail to

unit test it for any of several reasons – in the interest of saving time, because of too heavy of a

workload or shortened project schedule, and so on. As a result, when later testing is to be done and a

problem is found, what would have been a simple fix at the unit level is monumental at other levels.

We come back to our seeming recurring theme that advanced planning saves time and money in the

long term.

If the team develops parts and software modules and accurate test cases based on the

Requirements Document, Project Scope Document, Functional Specifications, and Detailed Design

Specifications for the project (which they certainly should be doing), then those unit tests provide the

means to perform the following key measurements:

• Determining whether the module (mechanical or software) contains major design or

functional defects as measured against the specification documents.

• Determining when the module (mechanical or software) is ready to move into integration

testing, entrance testing and ultimately into system testing.

46

• Determining whether the module (mechanical or software) performs correctly on the test

environments (such as network, hardware, operating system, relational database

management system, and so on) that are necessary for your potential customer base.

Usually, testing that is done at the unit level is quite informal, especially in software. The

programmers devise whatever tests they deem necessary to fully exercise their code. At this stage,

hardware may have been tested at the manufacturer, especially in this age of utilizing Commercial-

Off-The-Shelf (COTS) products. In a perfect world, unit tests will be formally written and

consistently executed by development for all modules, software and hardware alike.

5.1.1.2.2 INTEGRATION TESTING

Once all of the modules have passed their individual unit testing, we will need to begin putting

all of the modules together. Once again, one can see how this is applicable at several levels. For a

system of systems, it is applicable for each individual system that will make the whole and for the

components of each individual system. Of course, perfectly sound modules can start acting in

perfectly unsound ways after they are combined with other modules.

At integration time, the tests that will be performed will need to focus on two things. First, we

want to assure that the module still functions as expected, i.e. when tested at integration time, the

results of testing need to provide the same results as unit testing. The second aspect of this testing is

called regression testing and is even more important. Regression testing is a battery of tests designed

to uncover any effects (detrimental or otherwise) of additions to the unit tested modules. The type of

testing that is typically done at the unit and integration level is known as glass-box testing. Most

glass-box testing occurs at the unit level, however, it may occur at the integration level. The “level” at

which a product or system is being tested is as follows:

• Glass-Box Testing – Glass-Box testing (or White Box testing) refers to the concept that the

integrator (read Systems Engineer when dealing with the integration of the system of

systems) has a good idea exactly what the input, processing and output of the tests is to

involve and can provide specific tests of the data. Because the integrator knows so much

about the inner workings of the system, they can view the results through the transparent

glass box and immediately understand the meaning of the testing efforts.

• Black-Box Testing – Black-Box testing involves testing after unit and integration testing are

complete. Black-Box testers have no knowledge of the inner working of the system as the

previously mentioned Systems Engineer has. Black-Box testers typically only test the

installation and functionality via the user interface. The inner workings of the system are a

black-box to these testers. Black-box tests may uncover many problems that glass-box tests

47

miss because the black-box testers can not subconsciously tailor their tests to the known

needs of the customer, contract, etc. Because the testers can’t see in the box, they may test in

a way that the integrator didn’t think of.

Consider the following example given by Greg Mandanis: Suppose that the system logic

contains the Effective Date value to be a date no more than one year in the past or the future. If this

condition is not met, then the following error message should appear:

Insert failed – Case Effective Date too far in the past/future.

Enter a different Effective Date…

A glass-box test of the program’s data validation algorithms on the New Case form may include

testing a boundary of the Effective Date field by entering a date way in the future or way in the past.

If the incorrect date is accepted by the system, then the glass-box unit test failed, and the programmer

[in our case integrator] should open a defect report in the change management system and correct the

code before performing the integration test.

A black-box test of the program’s [in our case system’s] data-validation algorithm could also

identify such an error, but the black-box tester would only know that the incorrect data was accepted

for some reason as opposed to the actual logical error in the programming.

Conducting numerous glass-box tests early on against the various program modules (such as the

user interface and engine) and testing the various design document specifications (such as the data

model and data-flow diagram) is a good practice for developers to employ during the development of

a system. Remember, the Systems Engineer should run these tests both before and after integration of

a combination of modules:

• To verify that each module works as designed as a stand-alone component.

• To verify that two or more modules get along together, without breaking the other’s

designed functionality.

5.1.1.2.3 ACTIVITIES PRIOR TO SYSTEM TESTING

As continuously emphasized in this paper, planning will “cure what ails you.” As final system

testing nears, there are certain items that should be checked and double -checked prior to the final

testing. Of course, that list will vary from project to project, however, here is a generic list:

• The demo data (test data that the demo uses) is current. For example, the data would

have to test for a ten-digit zip code to be current today. We don’t want the data to present

any issues in preventing customers’ acceptance testing.

• The Technical Publications Team has finished the s oftware’s Release Notes. This will

ensure that the customer can install the software properly.

48

• Unit testing is complete. First things first. If unit testing is not complete, then the system

testing should not begin.

• Integration testing is complete on a formal build configured by the configuration

manager (CM). If the integration team hasn’t finished the configuration testing, then the

system testing should not begin.

5.1.1.2.4 SYSTEM TESTING

System testing refers to a detailed effort to test every single aspect of functionality of the system

in an attempt to anticipate as many user errors as possible. System testing may begin only after the

successful completion of unit and integration testing. System testing is most beneficial if it is done in-

house under “live-fire” conditions. The testers will try to rip apart the system and make it fail. Earlier

tests try to make sure that the system lives up to the design expectations, but during the system tests,

the testers are literally trying to break the system. Now, this is not a malicious attempt to break the

system. If the system is going to break, it is best that it break with the appropriate people there to take

action. It is best if this testing can even be done in-house, however, that is rarely possible with a

system of systems.

Beta testing is a term that is usually applied to software, however, we will choose to loosely

apply it to our system. Generally, systems testing is done in house while beta testing is done out of

house. The biggest difference between the two types of testing is that systems testing tends to be

extremely structured while beta testing is very unstructured. The difference between these two types

of testing is important because systems testers and beta testers focus on different criteria. In systems

testing, we want a structured, methodical approach to testing that exercises the entire system. Beta

testing undergoes testing in a haphazard way that is different from any preconceived notions or

constraints initially placed on the system.

5.1.1.2.4.1 DEVELOPING THE SYSTEM TEST PLAN

The system test plan should pick up where the unit testing and the integration testing left off,

with the objective to be the complete testing of all modules and components as a fully integrated

system. When creating the system test, it is imperative that it be done to t plan that can be traced back

to the contractual requirements document. The following are some general steps to consider when

creating the system tests:

49

1. Specify the source of testing that is needed. This step is usually pretty easy, as systems

tests should cover every single facet of the system. If the project is very large, the work may

be broken up among several people such that the scope is limited.

2. Define the test environment. Include all hardware and software that is needed for the test

equipment. Indicate any test data requirements if large data files are required.

3. Break down System testing effort into major categories. Here is where the various types

of tests to be run are indicated. Below is a subset of possible tests:

• Stress testing. This system test involves multiple testers and/or automated test machines

that issue an inordinate amount of transactions in order to simulate a heavy use

environment. The objective is to determine if the system can handle peak-volume

activity. This testing is often run concurrently with performance testing.

• Functionality testing. This system test exercises the various functions of the system

when testers process various transactions.

• Integration and compatibility testing. These tests exercise the combination of modules

to determine if they can work together or not.

• Recovery testing. In this testing, the system is forced to fail and tested to determine

how well it recovers from the failure. Key to this test is the system’s ability to trap error

messages necessary for recovery from the failed condition.

• Performance testing. The objective of this system test is to measure the system’s

performance at run time.

• Security testing. The objective of this test is to verify that the system provides sufficient

safety to thwart illegal access and potential harm to the system. Of course, the security

test will need to be done in such a manner as to accommodate the final security level of

the system. Further, in a system of systems, the security levels of the lower level

systems will need to be taken into account when deciding the final security level.

• Boundary testing. These tests check the minimum and maximum data input ranges for

the system.

• Concurrency testing. This system test assesses how well the system handles

multitasking, communication, and synchronization between tasks. Some questions to be

answered during this testing are: Which of several users will have first dibs, and which

users will be locked out, etc.

Obviously, most of the above testing is software-related in nature. It is assumed that hardware

testing such as environmental testing was accomplished at the unit test level or before.

50

4. List all of the test cases that will be tested. This is an excellent crosscheck for the

contractual requirements document.

5. Write the individual test cases.

5.1.1.3 QUALITY ENGINEERING

Quality Engineers are the Systems Engineers of the quality world. Broadly, Quality Engineering

is supposed to be responsible for determining and planning the work for the rest of the quality

department. They should be responsible for the overall quality concerns of the company by ensuring

that all the loose ends are tied up such that the system as a whole will achieve its desired results. This

means that they must decide who inspects and tests what, where data is to be collected and who

should supply information to the system.

“Quality Engineers should collaborate with Design Engineering concerning a new product’s

performance characteristics and meet with Manufacturing Engineers concerning the way the product

will be manufactured. In that way Quality Engineers can determine how the product should be

inspected, tested, and controlled during its life both in and outside of the company. Detailing these

requirements, training people to accomplish them, and measuring results are what Quality

Engineering is all about.” [Crosby, 1980]

5.1.1.3.1 CORRECTIVE ACTION

“Today, most nonconformance problems, with the exception of unknown phenomena, are

preventable. All that is required are some organizational discipline and professional guidance.”

[Crosby, 1980] The old adage of “slow and steady wins the race” is never truer than when dealing

with the complex. A system of systems is certainly complex. Unknown phenomena will happen,

however with early planning and professionalism, a zero fault system is possible.

When problems are found, the key determinant to the system is not necessarily what is found,

but what is done with what is found. When dealing with the quality organization, all of the planning,

inspection, testing, measuring and other activities that quality performs is a complete waste of time if

they do not lead to the prevention of future problems. The saying “Those who do not learn from

history are doomed to repeat it” is quite to the point in this situation. The best sources of information

about situations requiring corrective action are observation of actual rejections and analysis of trends.

Because the evidence is so obvious, actual rejections are the easiest. Trends are less obvious; they

require detective work that may require lab analysis and other kinds of sleuthing.

A corrective action database is highly recommended. Usually, when dealing with a system of

systems, the components of the system whole will not be co-located. Because of this, a database

51

allows for a “shared” knowledge that can allow operators at one site to expedite the resolution of any

problems that they have by learning from the mistakes of others. This is corrective action in its most

pro-active form.

5.1.1.3.2 AUDITS

Very little is spoken about more and understood less than the auditing process. “Auditing is the

last refuge of those who really don’t know how to run a prevention-oriented life. Audit is the Bat

Masterson of business. When you get into trouble, just call old Bat. He’ll find all of the bad guys and

drag them all to justice.” [Crosby, 1980]

When used properly, an audit can be an invaluable tool. It is a planned examination of a

function, carried out either by determining conformance to procedures in process or by critical

analysis of the product or service that is the result of the process. That is it. There is no method that

yields better results in exposing shoddy, inattentive or misguided work. However, this is all that the

audit will catch; undedicated, bored or careless activity.

Philip Crosby gives these few basic rules for an audit to follow. These rules are applicable at all

stages of development. As the Systems Engineer in a system of systems, effective use of the audit tool

will be rewarded in spades in the future.

• Be specific about what you want to be audited and against what criteria the audit is to be

accomplished.

• Select individuals to conduct the audit that couldn’t possibly be interested in the outcome

one way or the other.

• Brief the audit team carefully and give them time to write a proper report.

• Do not tell them in any manner what kind of results you expect to find.

• Remember that the findings will point only to the front line troops. The real cause of the

problems lies behind the findings.

5.1.1.3.3 QUALITY EDUCATION

As discussed in Chapter 4, continuing education is imperative to a product line’s success.

Specific to quality, education must be paramount to all involved in this process (quality). How will an

inspector verify the newest functionality if they do not understand what it is? Further, the latest

quality standards themselves require refresher courses. According to Philip Crosby, quality education

takes three basic forms

1. Orientation to the concepts and procedures of quality; the problems that have a harmful

effect on the product; and the expectations of the customer.

52

2. Direct skill improvement in such specific things as soldering, computer programming,

procedure writing, etc.

3. A continual low-level but concentrated barrage of quality idea communications to serve as

reminders and conditioning, to make quality a thought always in everyone’s mind. Nothing

flashy, just positive ideas that are in good taste and current.

5.1.1.3.4 PRODUCT SAFETY

There are a few thoughts to convey on product safety. How can we keep our products from

hurting our customer or others? The stories in the newspaper are certainly unnerving with large jury

awards and the like. When handled maturely, a safety problem is no different than any other problem.

If you are wrong, admit it, correct it and smile the whole time. People only want to be treated fairly

until their rights are trampled on; then they want revenge. Let me be very pointed in this fact. This

issue gets back to being a concerned professional and doing what is right by everyone. Product safety

is not a legal problem, it is an ethical one.

5.1.2 HANDLING DEFECTS

Inevitably, there will be problems in putting the system of systems together. If there weren’t,

Systems Engineers wouldn’t be necessary! How these defects are handled is the number one

determinant in the success or failure of the overall system. All of these problems will be reported in

the Change Management System (CMS). Changes to the baseline and problems with the technical

baseline can occur at any time. The following list of common causes of defects was modified from

Mandanis [2000] to apply to a system of systems:

• Insufficient or Erroneous Requirements: Did the customer clearly state what they wanted

you to build? Do you understand what the customer wants built? Deficiencies in the

Technical Requirements Document (TRD) or Project Scope Document (PSD), functional

specifications and detailed design specifications can lead to defects.

• Deviation in Coding from Design Specifications: Occasionally a programmer develops

code that deviates from the original design specifications. If done as an enhancement, make

certain that the customer is in agreement. If the programmer intentionally deviated from the

specification, warn once and keep a sharp eye on their work; terminate the employee on the

project (if not the company) the second time. Intentional disregard for the customer’s wishes

is poor business and can lead to safety issues.

53

• User Documentation Defects: When creating the end-user documentation, including

operational instructions, software loading procedures, etc. there is incomplete, erroneous or

misleading information.

• Insufficient or Erroneous Testing: This one strikes close to home. This is directly under

the perue of the Lead Systems Engineer. Defects may arise due to lack of or insufficient

module, integration or system testing. Further errors may arise if the customer requires a

Formal Acceptance Test (FAT) and the error survives through it.

• Hardware Damage: Insufficient vendor testing or module testing of the hardware can lead

to a defect. Care should be taken in these cases because hardware damage can lead to a

safety problem.

• Incorrect Configuration and Reconfiguration of the Hardware or Software: Changes to

the baseline MUST ALWAYS be recorded in the change management system. Defects can

arise from incorrect configuration and/or reconfiguration of the module, integration or

system build candidate. Software developers can sometimes fail to check in or reconfigure

their code changes into the configuration management system, resulting in fixes missing in

the next software build.

The above list is by no means unabridged in its account of defects possible. When one occurs

one of these (or another) type of defect, they must be recorded in the change management system.

Usually, in the CMS, there are subsets of issues to be reported. The two main subsets will be 1) a

process to identify change to the baseline of the system (i.e. configuration management which we will

discuss in detail in Chapter 6) and 2) discrepancies to the technical requirements of the project. When

discrepancies are reported, they need to be flagged with a priority. Priority will usually be similar to

the following:

• Priority 1 – FATAL: The entire system is adversely affected and completely inaccessible.

This error can be caused by anything including software, hardware or network configuration.

• Priority 2 – CRITICAL: A major part of the system or critical functionality is affected and

no reasonable workaround is available. In the system of systems, this would equate to an

entire module of the overall system going down.

• Priority 3 – MEDIUM: A moderate part of the system or critical functionality is affected.

A reasonable workaround is available, but requires tremendous effort on the part of the user.

The solution may not be postponed forever.

• Priority 4 – MINOR: System functionality is not adversely affected and users are able to

complete their transactions despite the problem. Often, this issue may be transparent to the

user.

54

• Priority 5 – ENHANCEMENT: A request to modify the baseline with a change that has

not been previously identified in the Technical Requirements Document or the Project Scope

Document.

It is foolish and perhaps unethical to keep these defects from your customer. The customer will

understand that there will be problems as the system is built. They may not like the fact that their

schedule may slip or that it may cost them more money, however, they would always rather know

than not know.

When a problem is encountered, typically the following steps are followed depending upon the

organization in charge’s processes and procedures:

• Perform a valid test against the most up-to-date version of the system. Before entering a

defect into the CMS, verify all of the facts concerning the error. Determine the level

(module, integration or system) that the problem affects. Be certain that once the level is

determined, there is no “waterfall” affect, i.e. a system problem may affect the integration

and module levels.

• Isolate where the problem is. During any test cycle (Module, Integration, System or FAT),

if the tester uncovers an error, the problem needs to be isolated whether it is in the delivered

software, a user-error, a data error or a customer customization error.

• Enter only a legitimate Discrepancy Report or enhancement into the Change

Management System. Once the problem is isolated and determined to truly be an error, we

have a legitimate DR that has been screened for entry into the CMS.

• Submit the DR or Enhancement to the Change Control Board (CCB). Not every DR or

enhancement is automatically targeted for future release. This board is comprised of

Engineering Management (specifically the LSE), Program Management, Configuration

Management, Quality Assurance and the customer at a minimum depending on the issues.

The CCB will discuss the merits of the action in question, taking all aspects into account and

render one of the following decisions:

 Approval. The change should be adopted in the project. This approval may or may

not result in a change in project scope. For instance, the change may only result in a

change of how a particular project goal is implemented in software.

 Deferral. The change has merit, but will adversely affect the current project scope,

schedule, or resources. The change is tabled until some future date or software

version.

55

 Field Fix. The change has merit, but only limited applicability. It is approved to be

made in a particular customer implementation of the software, but not in the general

release.

 Refusal. The change is rejected, and does not warrant future consideration. The

basis of the refusal can either be made public or not, based on common practice in

your organization.

The CCB’s decision should be required to be unanimous. Obvious problems can occur if

there is dissention in the decision.

• Write Documentation. This usually is included in a software error. Documentation would

include installation notes and release notes that include a list of defects and fixes included in

the release.

• Unit and Integration test the fix or enhancement. This is done to verify the fix and insure

that no new errors have been introduced as a result of the fix.

• Perform regression tests on the fix or enhancement and the documentation. This test all

areas of the system’s functionality that are determined to be at risk from the particular fixes.

By fixing even one area of functionality, the risk is run of breaking a number of other areas.

These tests are to be run by quality assurance with strong help from the Systems Engineers.

• Deliver the fix or enhancement to the customers. After the fix or enhancement passes the

aforementioned QA testing, certify it for release. If the issue was a software fix, FTP and

Web-based software download sites are a common delivery medium of choice in the brave

new world of e-Commerce. Obviously, if the software is classified or proprietary to the

outside world, other arrangements will need to be made.

5.1.3 ISO 9001

Several people are intimidated when they see this phrase. They are unsure how this organization

is going to change their business. ISO is from the Greek work “isos” meaning “equal.” It is an

international standard for assessing and registering management systems. It was developed by the

International Organization for Standards (ISO) in 1987 and has been adopted by over 76 nations. One

might be curious as to what a management system is. Briefly stated, the ISO 9001International

Standard describes and defines the basic elements of a management system needed to ensure that our

56

company’s products and services meet or exceed our customer’s needs or expectations. ISO only

requires a few commonsensical efforts:

• An acceptable, documented management system

• Proof that employees actually follow the system and procedures

• Periodic audits of process quality

• A corrective/preventative action process that ensures that you fix areas that fail to comply

with the management system.

In short, ISO 9001 says: 1) Document what you do, 2) Do what you document and 3) Have evidence

to prove it.

Basically, there are 20 Elements of ISO 9001 as shown in Figure 17.

Figure 17 – 20 Elements of ISO 9001

As demonstrated above, the key to achieving and maintaining ISO certification is documenting

and following a process. Documenting a work process not only qualifies for ISO certification, it helps

57

lay the foundation for the work to be done. In a system of systems, the intermingling of components

and processes can be overwhelming if the processes are not followed.

Figure 18 shows an example of a high level product/system process. With apologies to the

reader for the type being so small, several other “descriptive” figures will be shown that give greater

detail to this figure.

Figure 18 – Top Level Product Process

As shown in Figure 19, the Product Process is handled through a “gating” process. This process

allows for decisions to be made by the appropriate level of management (Engineering, Program

management or otherwise) as to whether or not the process is ready to proceed. Notice that the

various levels of management are responsible for this process; Business Development for gates 1-4,

Program Management for gates 5 and 11 and Engineering for gates 6-10. Whereas this process may

be fine for some systems to follow, others may require a different approach. Any approach is fine as

long as it is a documented process. Further, the process should be tailorable so that it may be applied

at levels of the system under the top level (i.e. module or component level).

58

Figure 19 – Process Definition Through Gating Process

As the Systems Engineer evaluates the process that they are following, he/she will notice various

levels of maturity in the process. Figure 20 shows pictorially the evolution that the process will go

through. Obviously, level 5 is the desired level for the overall system, however, one will notice that

with various groups of people involved, Program Management, Business Development, Engineering,

etc., the individual components shown in Figure 19, may be at different levels of maturation.

Evolving this process so that all groups are on the same page is one of the greatest challenges that the

SE will have to face. Complicate this with the fact that in a system of systems, the SE will probably

not only have to deal with different disciplines as mentioned above, they will probably also have to

deal with different companies and their philosophies.

59

Figure 20 – Process Maturity Levels

5.2 CONCLUSIONS ABOUT QUALITY

In keeping with the theme of the paper, quality of the product is enhanced with early planning.

Whether the early planning has to do with the testing, safety concerns, training or process

development, clearly defined roles at the outset will prevent most serious quality assurance issues

from coming up. One can complete the project with no final errors. The Ford Motor Company has a

motto that “quality is job one.” As engineers, our commitment to a quality product and the resulting

output are a calling card that will always be associated with us. We must always strive to ensure that

quality is at the top of our priority list.

60

CHAPTER VI

CONFIGURATION MANAGEMENT AND THE SYSTEMS ENGINEER

The goals of using CM are to ensure the integrity of a product and to make its evolution more

manageable. Although there is overhead involved in using CM, it is generally agreed that the

consequences of not using CM can lead to many problems and inefficiencies. The overhead of using

CM relates to time, resources, and the effects on other aspects of the software lifecycle.

 -Susan Dart

6.1 SOME THOUGHTS ON CONFIGURATION MANAGEMENT

Controlling the ever-creeping scope and other risks affecting the system is one of the biggest

challenges that the Lead Systems Engineer must face. As soon as the marketing department presents

the Requirements Document at the project kick-off meeting, the team can respond with the Project

Scope Document (PSD). In the PSD, the project team may identify which technical features that may

be included-or excluded-from the project’s scope. The mission of the technical team in these early

stages is to negotiate the final terms of the technical scope with Program Management and the

customer to keep the project scope from becoming a constantly moving target. During this initial

stage, the LSE will need to identify and prioritize any potential risks that can jeopardize the project’s

success.

Some may wonder why we can’t just rule with an iron fist and make zero changes. In an ideal

world, refusing to make changes is great, in the real world, however, things aren’t always as easy as

this.

There are two types of changes that will need to be dealt with in the system, necessary changes

and “nice” changes. Putting off “nice” changes is easy – they may be shrugged off or implemented at

a later time. Necessary changes, however, are those that crop up during the development stages of the

project. For example, it may be discovered that two modules do not work together properly, the

situation may be due to poor planning, poor programming, poor networking, etc. but something needs

to change. How the LSE (and others as the case may require) decides to make the change and what

that actions means to the whole of the system.

61

6.1.1 DEVELOPING A CHANGE MANAGEMENT PLAN

Once again, the common theme of this paper pops up: plan early. However, this time it comes

with a different twist; although we may plan and go to great lengths to nail down every conceivable

facet of the project including creating a detailed WBS, the project can still fall victim to change

(Notice, however, that with good initial planning, these changes are held to a minimum). Due to the

fact that change is inevitable, the LSE (in conjunction with Program management) will need to devise

a good Change Management Plan (CMP). A good CMP will encompass (at a minimum) the facets

listed in Table 9 [This is a modified version of a table from Mandanis, 2000].

Identification Change can come from many different places, both internal and external. A

project can experience “scope creep” of the requirements, objectives,

design, technologies, markets, staffing levels and other resources.

Assessment After the scope change has been identified, the key is to identify the effects

that these changes will have on the project. These changes can affect critical

path, schedule and budget.

Aversion Unfortunately, Murphy has many siblings, i.e. changes and problems rarely

come singularly, they come in bunches. It is exceptionally important for the

Systems Engineer to, after identifying and assessing the initial change, to

attempt to learn from this change so that other changes and issues from the

same and other sources may be averted.

Monitoring The LSE must monitor the project to assure that changes do not “sneak in

the back door.”

Table 9 – Facets for a CMP to Have

The CMP that the LSE (or their company implements) will need to describe (at a minimum) the

items in Table 10 [This is a modified version of a table from Mandanis, 2000].

6.1.2 HANDLING PROJECT CHANGES

In dealing with project changes, the name of the game is “proactive.” Greg Mandanis [2000]

identifies four steps that may be taken to handle project risks and changes; these will be modified to

be more applicable to Systems Engineering and the system of systems.

1. Find out the system/project status from the technical team during weekly status meetings

2. Evaluate the cause and effect of the change

62

Key Project

Documents

These documents include the Requirements Document, Statement Of Scope

(SOS) and detailed design specifications. These documents will be used as

the measuring rod to determine whether or not to make a particular change.

Software Software is a key portion of the CMP as software will change more

radically and more often than any other portion of the CMP. How these

changes will be addressed should be included in the CMP

Baseline Project Plan

(BPP)

This portion of the CMP will largely be used by Program Management.

This plan is used to determine how the changes will affect the schedule.

Chapter 3 has a more detailed discussion on how a Systems Engineer

should deal with schedule changes.

Change Control

Board (CCB)

Composition

As mentioned previously in Chapter 5, the CCB should have, as a

minimum: Engineering Management (specifically the LSE), Program

Management, Configuration Management, Quality Assurance and the

customer. This diversity will insure that all aspects of the system (not only

the technical concerns of the LSE) will be handled.

Change Control

Board Processes

This portion of the CMP is imperative to plan early. Within the CCB, there

will be disagreements as to how to handle various aspects of change.

Without predetermined protocol, i.e. determined prior to the first negative

encounter, the CCB will have little chance to perform its job function.

Table 10 – Items for the CMP

3. Modify the plan and anticipate schedule changes to help Program Management and the

customer plan for the change

4. Notify all parties involved of any project changes and allocation of resources

When changes are to be made, the CCB must approve the change regardless of the initiator. As

shown in Figure 21, however, when a problem is reported and a CMDB is in place, often the problem

has been reported before and is resolved more quickly. The Change Management plan should address

problems such as these to allow for easy disposition.

63

Figure 21 – Problem Resolution with a CMDB

6.1.2.1 GETTING PROJECT STATUS

It is imperative that, as the Lead Systems Engineer, we maintain a constant vigil over the status

of the project. It is recommended that status meetings be held once a week. If meetings are more often

(except in special and emergency circumstances), no work will get done because everyone will

constantly be going to meetings. However, waiting more than a week will bear on the ability of the

LSE to manage the technical team. These weekly meetings should include all members of the

technical team (when practical) and should last for no more than an hour. Prior to the report, team

leads should present the LSE with written reports of activity, problems, changes, etc. that have

occurred since the last meeting. General issues that should be included in these weekly meetings are

(at a minimum):

• Is the team following the prescribed development processes and procedures?

64

• Are any issues impeding the work in progress from meeting the planned technical goals and

objectives?

• Is the team completing the project tasks on schedule?

• Has module testing reported any high-urgency or severe problems?

• Are there any training issues to discuss

As the building of the system continues, the formal meetings and status reports are the vehicles by

which the LSE instills a sense of responsibility in the technical team.

6.1.2.2 EVALUATION OF THE CAUSE AND EFFECT

There may be, during the course of the project, a change that is waiting in the wings to jump up

and cause the project to fail. As an example, a competitor introduces a new feature that your product

does not include. A sure way to introduce problems such as release date slip, resource overallocation

of resources or shoddy workmanship is to blindly accept huge scope creep changes. It is fine to say no

to changes that can affect the outcome of the product, in fact, it is your job’s duty to say no if the fate

of the project is on the line!

Large changes inevitably end up in front of the CCB (which the LSE is part of). Two of the

major responsibilities of the CCB is figuring out the cause of a change and determining how the

change will affect the project as a whole. “In some cases, examining changes to past projects that [the

LSE’s organization] has undertaken may prove instructive. By understanding such past problems, [the

LSE] can better respond to similar challenges in the current project.” [Mandanis, 2000]

6.1.2.3 MODIFYING THE SCOPE, SCHEDULE OR RESOURCES

Let us suppose that after one of the LSE’s weekly meeting, it is determined that the project is

considerably over budget and more than 500 hours in excess of the scheduled budget. The answer is

to go through the project cycle that initiated the project. Hopefully, this will help identify what area in

the project has some “wiggle room” to help get the project back on track. Unfortunately, we may only

change ONE aspect of the project’s three aspects: scope, schedule or resources. It will need to be

determined which needs to give so that the project can stay on course. Talk to the Program Manager

and possibly the CCB to determine the most reasonable solution to the problem. If the changes that

require modification lie outside the initial project scope, the responsibility may be transferred to

Program Management/Marketing for later upgrade.

65

6.1.2.4 NOTIFICATION OF CHANGE

Whenever there is a change in the project’s scope, time or resources, the LSE must absolutely

communicate with Program Management, the technical team, the customer and all other affected

parties concerning these changes. The notification needs to be formal in nature, sending all involved a

memo and making appropriate changes to the Configuration Management Data Base (CMDB). If

deemed necessary, the LSE may further delineate any repercussions of the change in the weekly

status meeting.

6.1.3 CHOOSING A COURSE OF ACTION

After a change is approved, there are five alternative courses of action in dealing with the change

so that the project doesn’t slip too far off the yellow-brick road. First, the Work Breakdown Structure

(WBS) can be reorganized so that tasks are completed simultaneously rather than in sequentially. This

way, critical tasks are completed before any changes can delay their completion. Typically, this

course of action is most effective when implemented early in the development process. A second

technique is to alter the schedule by changing the start and finish times of non-mission-critical tasks.

Of course, the customer must approve these schedule changes. The third approach is to throw more

resources at critical activities that may be affected by the change. Using extra engineers doesn’t

always help. The trick to allocating extra resources is making certain that this doesn’t create a

problem in other areas, such as ignoring other tasks for the sake of finishing one task. A fourth

approach is to diplomatically push for some of the features to be scheduled for a future release.

Finally, if all else fails, the activity may be removed from the critical path. This would require the

LSE to weigh the relative time and resources gained by removing a task versus potential losses in

functionality and the resulting effect on the customer’s wish list.

Table 11 shows the Risk Priority Matrix that allows the LSE to cross-reference the probability of

a change or error occurring with the risk severity and come up with risk aversion options. The risk

aversion option that is chosen will help to choose which of the five courses of action is most suited to

the issue at hand.

As a further reference to a CM process, Figure 22 [Rational Software Group, 2000]

demonstrates a generic approach that may be tailored to any system. It will be imperative that the

LSE work with Configuration Management in the system of systems to ensure a high level beginning

that translates down to a pinpoint functionality plan. If the LSE’s organization already has a CMP that

they utilize, fine. If not, create one!

66

Figure 22 – A Generic Approach to a CM Process

67

Table 11 – The Risk Priority Matrix

6.2 CONFIGURATION MANAGEMENT STANDARDS

Table 12, is a listing of some of the more common Configuration Management Standards (CMST)

Guidelines for Configuration Management ISO 10007

Configuration Management MIL-STD-973

Specification Practices MIL-STD-490

Quality Systems – Model for Quality Assurance in Design/Development,

Production, Installation and Servicing

ISO 9001

Document and Data Control Procedures Manual DDC000

Table 12 – Some Common Configuration Management Standards

68

6.3 CONCLUSIONS ABOUT CONFIGURATION MANAGEMENT

As with all other issues for the Systems Engineer, the Configuration Management issue is best

handled by planning early. It is imperative that a Configuration Management Plan (CMP) be

implemented immediately after program award. The understanding of where the hardware and

software are in the development cycle is of utmost importance to the LSE. Further, as a result of

having a CMP, a change control board (CCB) should be implemented to assure that the changes

implemented are what is best for the system as a whole. As a risk mitigator for change, the LSE

should have status meetings once a week with the engineering leads to assure that all changes have

been approved and the system is on the right track.

69

CHAPTER VII

SPECIAL ENGINEERING TOPICS

7.1 INTEROPERABILITY OF THE SYSTEM

When creating a system of systems, interoperability is obviously a number one priority of the

engineering team. For example, are all of the operating systems the same? Are all of the applications

the same? Getting the systems to function together as one system is the reason why we were hired in

the first place. In getting this done, we apply some technical know-how, a little ingenuity and “viola!”

a system of systems. However, when we speak of interoperability, there are a couple of layers below

that we must discuss.

First, there may be political ramifications of the system. For instance, how will we deal with the

scenario that one initial system belonged to the Navy and one initial system belonged to the Army.

Obviously both groups will want as little change from their initial system to the final system as

possible but something will have to give! A word to the wise, even though Systems Engineers are the

technical leads of the system, leave the politics to the Program Manager! However, there still may be

difficult problems that arise technically. These two systems may have been built under different

standards and now are migrating to a third standard. The complexity of the interoperability has just

increased by an order of magnitude!

One aspect of interoperability that I would like to focus on is Defense Information Infrastructure

Common Operating Environment (DIICOE). This initiative, put forth by the United States of America

Department of Defense basically wants its computer structure such that, no matter where an operator

goes, whatever they do and no matter what they do with a computer, it appears completely the same.

This is interoperability at its most minute detail! Of course, “appearing the same” is a relative term;

different applications will appear different but the structure of the operating system and how the

computer or network is set up to run is nearly the same. DII COE is mission-application independent.

It is:

• -A basis for a system architecture

• -An approach

• -A collection of reusable software

• -A software infrastructure

• -A set of guidelines and standards

70

 “The DII COE is not a system; it is a foundation for building a shared system.” [Wheeler, 2001]

Figure 23 [Wheeler, 2001] is a pictorial representation of the runtime structure of the common

operating environment.

Figure 23 – DIICOE Runtime Structure

Notice that the less domain specific the structure is, the more generic the structure is. There is a

similar structure to hosting applications as well. The end result is that most government contracts

want the system to be DII COE Level 5 compliant. As this indicates, there are various levels at which

a contract can comply. Figure 24 [Wheeler, 2001] is a pictorial representation of the levels of DII

COE compliance. When one begins a DII COE process, they must begin a migration path. The

purpose of this migration path is to take their “stovepiped” systems and create a DII COE

“segmented” system. Segmentation is a process performed by software developers to convert their

existing application software to a format that is capable of being installed by the COEInstaller and

executed in the DII COE runtime environment.

71

Figure 24 – Levels of DII COE Compliance

Obviously the next question is how is the environment expected to be segmented. Figure 25

[Wheeler, 2001] shows some of the different segment types found in a DII COE environment.

Figure 25 – Segment Types of the DII COE Environment

72

Implementing a DII COE system is time consuming and costly, however, it is becoming more and

more frequently a requirement of military contracts. It is a good system and a good idea, and, no

matter how hard military contractors fight the inertia of change, it is apparently here to stay.

7.2 SYSTEM LOGISTICS AND THE SYSTEM ENGINEER

When logistics is mentioned to most people, they immediately think of shipping a product or the

effort leading up to the shipment of a product. As a general rule, shipping and asset tracking do play a

large part of system logistics. However, for the Systems Engineer and the system of systems, there are

several other aspects of logistics to consider!

First, when designing a system of systems, a LSE must maintain the support base of the system.

Logistics will become a nightmare if there is a “chink in the armor” of the logistics chain of the

system. As discussed before, most systems of systems will not be collocated. How will information,

data resources, etc. get from one site to the other without a proper logistics chain. It is a well known

military fact that the supply chain to an army is one of the, if not the key factor to maintaining that

force’s readiness. Logistics usually does not fall under the Lead Systems Engineer’s perue, however,

they must work closely together in order to assure that this operation runs very smoothly. Depending

on the application, the logistics network connecting the lower level systems, may be as important as

the electronic network to the system.

Second, the LSE must be aware of the infrastructure of the system. Obviously the LSE is well

aware of the technical infrastructure to the system, however, there is another side of infrastructure that

must be made aware: how the systems work when NOT performing their technical job. What I am

referring to here is not the data flow from one system to the next throughout the system, we are

talking about the way that system A handles thing versus System B or System C. This “human factor”

will become very important in getting the job done. We would like to believe that all aspects of every

logistics department is the same, but they will not be! Understanding this dichotomy will help the

LSE expedite the system build as they attempt to fit into this “infrastructure.”

The third area of logistics that must be understood is in fact shipping. We are very used to the

fact that, if we want to mail a letter, we put the letter into an envelop, apply a stamp and put it into a

I can build you the perfect product. Just don’t ask me to ship it.

-Anonymous

73

mailbox and we are done! When shipping parts of a system, or the entire system, the responsibility

grows. When dealing with government contracts, there are numerous forms to fill out that transfer

responsibility to the government, obey security regulations for the government, etc. Regardless of the

system, how it gets where it is going will be an issue. Another area of shipping to think about is what

happens if the entire system is to be moved. The LSE then gets to verify that the next site has all of

the appropriate connections (i.e. CAT 5, phone, Internet, power, water, etc) so that the system can

perform in the way that it was designed to.

None of these tasks present monumental tasks to be overcome, however, in a complex system of

systems, the logistics of assuring that everything is where it is supposed to be, when it is supposed to

be can be very difficult or very hard for the LSE. The way to get on top of this issue and stay on top is

to be certain that an initial logistics plan was created if the LSE’s company doesn’t already have one.

Once again, the key is to plan ahead.

7.3 SYSTEM SECURITY

Security of the system of systems is an issue that will be very dynamic depending on the final

function of the system. E-commerce systems have very different security requirements than an

industrial system. Military systems possibly have the most complex security regulations of all.

Without a doubt, however, within a system of systems, network security will be an issue. Most of the

lower level systems that comprise the overall system will need to communicate with each other. They

will do this over a network. This communication varies radically from company to company, so, as

stated before, how it is protected varies.

“The increasing globalization of business – and the almost universal accessibility of U.S.

companies in a worldwide e-commerce marketplace – have created new, often unknown, and serious

global security threats. The have created new “cyber-security” requirements that are reshaping the

competitive climate and driving new measures to protect proprietary information.

Despite the pervasive nature of these threats, the United States government is not positioned to

defend its electronic/information borders. The burden rests on companies and organizations

themselves. To date, the response has been largely defensive, consisting of strategies to counter

known hostile elements. In reality, however, threat elements constantly identify new vulnerabilities,

making configuration-dependent and passive measures ineffective.” [Vigilinx, 2001]

In order to counter these issues, there is a need for the implementation of Security

Intelligence. If we define Intelligence, we might say it is information needed by decision

makers that provide insight into the capabilities, activities and intentions of hostile elements.

74

In the military, this definition is accurate as well, accurate intelligence allows the leaders to

know how to user their resources to their best advantage.

Not too long ago, one could know reasonably well who their competitors were and what

measures they could reasonably take to nullify any advantage that that competition had in the

marketplace. Since every major corporation is now “networked” together via the Internet,

“cyber-security” is reshaping the competitive climate and driving new measures to protect

proprietary information.

A commission established to appraise U.S. Intelligence in 1996 found that “…the scope

of the actions required to deal with the problem, especially the protection of computer

networks in the private sector, would necessarily exceed the roles and capabilities of U.S.

Intelligence agencies.” If the government is not able to help defend information networks,

reliable Security Intelligence must be fashioned to take care of the problem.

Hazard has been part of trade since the onset of time. The wares are different nowadays,

but networks to the “outside world” are still threatened by:

• Benign Intruders – electronic explorers and hackers

• Script Kiddies – cyber-delinquents and crackers

• Opportunists and Thieves – criminals engaging in computer – assisted crime

• Hactivists and Extremist Groups – political, religious and social elements

• Industrial Espionage and Sabotage – competitors, labor elements and disgruntled

employees

• International Espionage – state–sponsored intelligence gathering

• Information Warfare – direct attack or unintentional collateral damage

Network Security Intelligence (NSI) is a subset of an intelligence package. This subset

should be owned and operated by every modern, computer-based enterprise in order to

maintain an effective security posture. “SI is comprised of vital information concerning

specific technology-linked vulnerabilities and threats and their impact on the security of

electronic information. It enables organizations to effectively manage risk, minimize system

security weaknesses, prepare rapid responses and gain the confidence necessary for

implementing judicious corrective actions.” [Vigilinx, 2001]

When dealing with a system of systems, network intelligence will be very important to

the final customer. The network will need an intelligence product that will identify threats

75

and apply preventative or remedial actions that will keep the system’s information

proprietary. There are several commercially available products that are multi-dimensional

and address a wide range of IT and security concerns. These products will provide an “extra

set of eyes” for network protection.

76

CHAPTER VIII

MAINTENANCE OF THE SYSTEM AND THE SYSTEM ENGINEER

When dealing with any system, but especially a system of systems, maintenance and parts

obsolescence become an exceptionally important facet of the system. Since maintenance is usually

thought of as something to be done after the system is deployed, usually very little up front planning

is performed to take into account the Preventative Maintenance (PM) of the system. This way of

thinking could not be more off base! Maintenance should always be one of the first things discussed

due to the fact that it will drastically affect how the initial parts order for the system will be handled.

In today’s world, Common-Off-The-Shelf (COTS) products are being used much more

frequently. These products change rapidly and require special maintenance. The maintenance of the

component parts is usually described in the literature provided with the COTS product; this individual

literature can help the Systems Engineer create Preventative Maintenance requirements for the whole

system. Obviously this job is made difficult by understanding how the individual jobs come together

to make the whole, but therein lies the job of the Systems Engineer! Further, a plan is needed to on

how to implement system upgrades, future requirements, etc. It should be obvious that planning for

the maintenance of the system earlier rather than later benefits everyone and everything involved.

8.1 RELIABILITY CENTERED MAINTENANCE

8.1.1 BACKGROUND ON RELIABILITY CENTERED MAINTENANCE

Reliability Centered Maintenance (RCM) is a process for achieving equipment reliability by

identifying the Preventative Maintenance tasks that are needed to prevent or mitigate equipment

failure. The airline industry first defined the RCM process in the early 1960’s. It gained acceptance

due to its effectiveness and the fact that it provided a more economical solution than other fielded

solutions. It is now the principal process for commercial and military aircraft and many nuclear power

plants.

8.1.2 PRINCIPLES OF RELIABILITY CENTERED MAINTENANCE

“RCM is based on the realization that equipment reliability cannot be improved by putting a

limit on operating age. It also recognizes that equipment overhauls are likely to cause more problems

than they prevent.” [Harrington, 2000]

When the reliability of a system or piece part is called into question, the model of reliability that

most readily comes to people’s minds is the “bathtub” model as is depicted in Figure 26.

77

Figure 26 - The Bathtub Curve of Reliability

New equipment, or new components of equipment may suffer from “infant mortality” i.e. a

small percentage of new equipment can be expected to fail in the first few days or weeks of service

due to imperfections created in the manufacturing process or due to imperfections in the quality of the

materials of construction. After this initial “wearing-in” time, the reliability of the product or

components the failure rate can be expected to be relatively low and constant for the majority of the

life of the product or part. As the product (or part) gets older, the rate of failure may be expected to

rise dramatically in a short period of time.

Most Preventative Maintenance (PM) programs are designed around the bathtub curve. Most of

a company’s time and effort is given to estimating when the “wearout” stage of the equipment is; and

then replacing the part immediately prior. It is true that there could be a period of infant mortality

with the new components, however, that is deemed less intrusive than a breakdown of the component.

In the 1960’s the Boeing Aircraft Company was promoting its new, large 747 airplane. United

Airlines and other companies were very interested in having an aircraft in their fleet of this size but

78

were very concerned about the PM costs to the company. The cost associated with the PM program

for the plane gave United’s management cause to try and improve the bathtub PM curve. Figure 27

[Harrington, 2000] shows how the results that they found completely changed their way of designing

a PM program. “They discovered that only 11% of nonstructural aircraft equipment could benefit

from putting a limit on operating age. A whopping 89% could not benefit from a limit on operating

age. The study showed that the bathtub curve applied to only 4% of aircraft equipment.” [Harrington,

2000] Realization of this fact caused a complete overhaul of the PM programs and the Reliability

Centered Maintenance (RCM) programs were born.

Figure 27 - Age Reliability Patterns

Within the RCM process, there is a clear distinction between the four categories of PM tasks;

they are:

1. Time-Directed (TD) tasks aimed directly at failure prevention or retardation.

2. Condition-Directed (CD) tasks aimed at detecting the onset of a failure or failure symptoms.

79

3. Failure-Finding (FF) tasks aimed at discovering a hidden failure before an operational

demand

4. Run-to-Failure (RTF) a deliberate decision to run to failure because the others are not

possible or the economics are less favorable.

The RCM program may be divided into six steps. These steps are modified from Robert

Harrington’s RCM Program. [Harrington, 2000] These steps represent a “classic” RCM Program:

1. Sub-System Description

2. Components by Sub-System

3. Failure Mode by Component

4. Failure Cause and Proposed Tasks

5. RTF Review

6. PM Tasks

These steps can be described as follows:

Step 1— The purpose of Step 1 is to fully describe the sub-system that has been chosen for the

analysis. Having done that, the functions performed by the sub-system are listed. The obvious

problem here for a system of systems is what is considered a sub-system; i.e. an entire sub-system, a

process within the sub-system, a component, etc. The correct answer is all of them! Of course,

dependent upon the complexity of the system (of systems) this can lead to several layers of a RCM

plan. If several layers are necessary, then we must observe all of the layers!

Step 2— In step 2, the components that make up the sub-system are listed. A component is defined as

a division of the sub-system, which has an identifiable function in the sub-system. Some examples of

components would be a Motor Driven Conveyer, a Motor Driven Hydraulic System, or a Punch

Press. Do not make the mistake of assuming that this step is the same as step one! It is important to

list the components of each layer. Only then may we be sure that all of the appropriate PMs for the

various parts are taken into consideration.

Step 3— The purpose of Step 3 is to identify the failure mode associated with each component and

the effect of the failure on the function of the sub-system. A failure mode answers the question, “How

Can the Component Fail?” Step 3 is in essence a Failure Mode and Effects Analysis (FMEA)

analysis. It identifies possible failure modes and the effect of the failure on the functions provided by

the subsystem. The effects of each failure are determined by passing each failure mode through a

Logic Tree Analysis (Figure 28). By answering the three questions in the logic tree the failure mode

80

is categorized as a hidden failure, a safety problem, a minor or insignificant economic problem, or a

line outage problem. As is becoming a recurring theme, this must be done for each level of the system

that requires a RCM approach.

Step 4— In Step 4, the Failure Causes (why the failure occurred) are listed along with the PM tasks

that will prevent or mitigate the failures. The RCM team members apply their knowledge and

experience to the choice of the most appropriate tasks. The frequency for performing the task and the

craft designated to perform the task are listed. This process is best understood with a standard format

form. Most companies have a designated “Problem Report (PR) or Discrepancy Report (DR) that

issues such as these may be categorized into and then learned from at a later time.

Figure 28 - Logic Analysis (Decision) Tree

Step 5— This step gives the team a second chance to review their Run-to-Failure (RTF) decisions and

change them if they feel so inclined. This is a so-called “sanity check.” Only RTF decisions are

considered in this step. If the team would like, a RTF decision can be rescinded and a PM task

designated for the failure model in question.

81

Step 6— Step 6 is the output of the program. Its purpose is to sort the Step 4 PM tasks into desired

formats for entry into a Configuration Management Maintenance System (CMMS) program. Thus,

separate lists are prepared showing tasks by craft by uptime or downtime, by frequency, or by

equipment number. The DR/PR-like process described in step 4 may accomplish this. A full

explanation of how the PM task is to be performed is given in the step. The PM tasks are next

transferred into PM work orders and implemented through an appropriate manual PM program or a

CMMS program. Unfortunately, finding the appropriate CMMS software may be a problem. “Failure

rates in implementing CMMS packages is high, with some companies installing two or three different

CMMS packages before they find one they are comfortable with. These failures can occur for many

different reasons. The most predominant of these are not developing and/or adhering to a timeline for

installation and implementation that takes into account the company's goals and objectives, and the

reluctance to implement the changes necessary that come with a good CMMS.”

[http://www.amsinc.com/cmt/OVERVIEW.HTM, 2001]

8.2 THE “BACKFIT” RCM PROCESS

The Center for Maintenance Technologies have discussed the benefits and disadvantages of

utilizing a “classic” RCM program vs. a more tailored, “shorthand” program that they refer to as a

“Backfit” program. The following has been taken from their website,

http://www.amsinc.com/cmt/OVERVIEW.HTM:

The "Backfit" methodology is a "shorthand" version of the "Classic" RCM analysis

methodology specifically designed for use where:

• existing PMS is satisfactory but probably excessive,

• considerable operating experience has been achieved with the item being analyzed,

• analysts applying the methodology have expert knowledge of the item being analyzed, and

• the activity responsible for the quality of results selects this methodology for use.

This process was originally outlined in the U.S. Navy's Reliability-Centered Maintenance

Handbook, but can be applied to any equipment.

This form of RCM validates three fundamental assumptions made during development of the

original PMS task requirements:

82

1.A specific dominant failure mode must be prevented to assure system or equipment

operational reliability. This dominant failure mode corresponds to the output of the "Classic"

methodology's Failure Modes and Effects Analysis (FMEA).

2.The task that is specified actually restores or maintains inherent reliability. This corresponds to

the "applicability" rules in the "Classic" methodology's RCM Decision Logic.

3.The task that is specified costs less than the cost of the failure it is designed to prevent. This

corresponds to the "effectiveness" rules in the "Classic" methodology's RCM Decision Logic.

Clearly, the "Classic" and "Backfit" methodologies are linked. One is simply a shorthand

validation of the other, which applies when certain pre-conditions are met.

The actual "Backfit" process itself comprises six basic steps. The steps in this process are:

Step 1: Determine the specific failure mode the preventive maintenance task is designed to

prevent. This would normally be a dominant failure mode identified in the original Failure Modes

and Effects Analysis (FMEA). The task description should allow the analyst to determine what

condition the task is designed to prevent.

Step 2: Determine whether this specific failure mode is likely to occur in service as a result of

age degradation. Unlikely failures do not require preventive maintenance tasks.

Step 3: Classify the task as a time-directed, condition-directed, failure-finding, servicing or

lubrication task. This is important; there are different rules for task applicability that are linked

to specific types of tasks.

Step 4: Apply the rules for task applicability for the type of task specified. These rules are based

on failure characteristics. If the applicability rules established for that type of task are not met,

the task is not applicable. If they are satisfied, proceed to Step 5.

Step 5: Apply the rules for task effectiveness. These rules are based on failure consequences. If

the effectiveness rules established for that type of task are not met, the task is not effective. If

they are satisfied, proceed to Step 6.

83

Step 6: Examine whether further improvement can be made to the task as it is now specified.

Even though the task may currently satisfy the rules for effectiveness, further improvement may

still be possible.

The RCM "Backfit" Process is a straightforward approach to maintenance task validation.

Successful application of this process requires sound operational experience with the hardware

involved, as well as good maintenance history data for review to ensure the analyst has the proper

basis for making good judgments. The extent of operational experience, required to provide such a

basis, must be determined on a case basis by each analyst.

Use of the RCM "Backfit" process provides many capabilities and benefits for

evaluation/improvement of maintenance requirements. First and foremost, the RCM "Backfit"

Process identifies maintenance tasks, which are not applicable or effective, for improvement or

removal.

The RCM "Backfit" Process provides a sound basis for making recommended changes. The

rules for applicability that pertain to time-directed and condition-directed tasks allow the analyst to

determine whether that type of task applies. If it does not, the rationale for revising or deleting the

task can be presented clearly. The requirement to demonstrate evidence of age degradation makes a

powerful argument for extending the intervals of maintenance tasks. In many cases, this can be done

through empirical age exploration. Using both elements of risk (probability as well as severity of

failure) helps one to see more clearly what value each preventive task actually provides. The logic

conveyed by the RCM "Backfit" Process permits organizations to dispel the use of folklore,

mythology, and anecdotal experience in justifying maintenance requirements, and to refine or

eliminate those requirements using explicit RCM rules.

Finally, the RCM "Backfit" Process provides results much more quickly and less expensively

than the application of the classic RCM analysis process (which remains available for use). The

"Backfit" process helps analysts analyze existent PMS requirements far more efficiently than they can

using classic RCM. This process does not waste resources by re-creating the original basis for PMS

tasks; it takes the tasks as they are and determines whether they still make sense. Where they don't

make sense, a basis for change has been established.

[http://www.amsinc.com/cmt/OVERVIEW.HTM, 2001]

84

8.3 CONCLUSIONS ABOUT SYSTEM MAINTENANCE

We have seen a couple of examples of a PM process applied to a system. Of course, within these

processes are the PM processes that apply to the sub-systems and even the component levels. When

dealing with a system of systems, every layer of the overall system must be dissected to assure that no

part is overlooked with respect to its PM process.

When maintenance is discussed, we tend to think of the system getting older and steps that we

may take to prevent the onset of age-related problems. However, maintenance of a system also

requires the Systems Engineer to be forward thinking about 1) future upgrades, 2) new technology, 3)

future requirements, etc. One of the single most motivating factors in a customer’s desire to create a

system of systems is the fact that equipment that currently exists gets folded in. These “legacy”

systems will require upgrades to maintain their place in the technological community.

As discussed earlier, initial planning for maintenance will solve most issues whereas last minute

thinking may result in overbearing cost. As part of the initial planning process, spares for the system

should be considered. With technology developing so rapidly, initial planning for the spares is

imperative; waiting could lead to a parts obsolescence issue that could lead to a system

incompatibility. Further, initial planning allows maintenance to become a viable part of the business

structure instead of a “knee-jerk” reactionary issue too late in the process. The Center for

Maintenance Technologies created Figure 29 below to illustrate this fact.

Figure 29 - Managing Maintenance as a Business

85

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

The methods laid out in this book have been applied wholly to one system that the

author was the LSE on. In keeping with the principles of this paper, the system was delivered

one month ahead of schedule, at a greater profit than expected and one very happy customer.

Secondly, the author applied these techniques to a program that he came in on about halfway

through its life. By completion, the program was back on schedule and in good shape

financially! These principles will always work well, even to dig a system out of a hole,

however, they work best when applied from the beginning with exceptional planning! The

individual portions of this paper have been applied to various programs as well with good

results. From applying these principles, a list of priorities has been derived for the LSE as

follows:

1. Safety

2. Quality

3. Schedule

4. Cost

As stated earlier, safety is not a legal issue, it is an ethical one. Quality is next on the list.

Products delivered should represent the absolute best that the LSE has to offer.; anything less

is not acceptable. Schedule and cost sometimes “flip-flop” depending on the company and

the product line, but they always fall a very distant third and fourth place to the first two.

As a means of a quick summary of the paper, the following are some exerpts of the conclusion

paragraphs contained within each chapter.

When designing the system of systems, the LSE must keep in mind how complex the system

will become. Obviously, there are varying degrees of complexity, however, how it is managed is of

utmost importance. The complexities involved in engineering a system of systems are so great, that

without a template for design and implementation, the chances of system success are limited. It is in

the understanding of the relationships between the lower level systems that system integration may

successfully occur. This is done by any number of methods, specific to this chapter is the Option

Field Method. When the system’s complexity has been managed and its relationships understood

from its lowest level to its highest (through an option field) the design of the system will be complete.

86

The Systems Engineer has responsibilities that overlap with Program Management. These gray

areas may change from program to program. The ability of the Systems Engineering and Program

Management to embrace this overlap and turn it into an advantage will largely influence the success

or failure of the program. Key planning meetings at the outset of the program is the best place and

time to discuss these overlaps and agree on who has what responsibility.

In keeping with the theme of the paper, quality of the product is enhanced with early planning.

Whether the early planning has to do with the testing, safety concerns, training or process

development, clearly defined roles at the outset will prevent most serious quality assurance issues

from coming up. One can complete the project with no final errors. The Ford Motor Company has a

motto that “quality is job one.” As engineers, our commitment to a quality product and the resulting

output are a calling card that will always be associated with us. We must always strive to ensure that

quality is at the top of our priority list. When maintenance is discussed, we tend to think of the system

getting older and steps that we may take to prevent the onset of age-related problems. However,

maintenance of a system also requires the Systems Engineer to be forward thinking about 1) future

upgrades, 2) new technology, 3) future requirements, etc. One of the single most motivating factors in

a customer’s desire to create a system of systems is the fact that equipment that currently exists gets

folded in. These “legacy” systems will require upgrades to maintain their place in the technological

community.

Finally, if this paper leaves the reader with only one thought, it should be to plan early. Be

specific in the plans as to who is responsible for what and when. If this occurs, the system will be a

success!

87

REFERENCES

Crosby, Phillip. Quality is Free: The Art of Making Quality Certain. New American Library. New
York, New York. 1980.

Dogru, A. “Domain Specific Analysis and Modeling”, Middle East Technology University, Ankara,

Turkey, and Engineering Department, Texas Tech University, Lubbock, Texas, (Briefing slides
and Lecture Notes: January 18-20, 2001).

Electronic Industries Association. EIA Interim Standard, Systems Engineering, EIA/IS-632.

Washington DC: EIA, 1994

Flynn, M. Intelligence Must Drive Operations: How Intelligence Can Clear THE FOG OF WAR,

Author: LTC Michael T. Flynn, G2, 82d Airborne Division, US Army,
http://call.army.mil/call/nftf/julaug00/flynn.htm. Editor's Note: This article was previously
published in the Military Intelligence Professional Bulletin , January-March 2000.

Ginac, Frank P. Customer Oriented Software Quality Assurance. Prentice Hall. New York, New

York. 1997

http://www.amsinc.com/cmt/OVERVIEW.HTM

http://www.VITec.com

Harrington, Robert. Reliability Centered Maintenance Program. Society for Maintenance and

Reliability Professionals. Fall 2000.

Institute of Electrical and Electronics Engineers, Inc. IEEE Std. 1220-1994, IEEE Trial-Use Standard

for Application and Management of the Systems Engineering Process. New York: IEEE, 1995.

Kaake, W. “Scout Mission Planning Tool Applique’ Design” Master’s Report for Texas Tech

Kaake, W. & Whittington, B. “Domain: ’Intelligence’”, Engineering Department, Texas

Tech University, Lubbock, Texas; Date: FEB 2001. Classification: (U) Unclassified.
(Analysis and Briefing).

Kauffman, Donald. Project Management and Systems Engineering: Where the Professions Intersect-

Generate Synergy Not Conflict. White Paper. Presented at the 8th Annual International
Symposium of the International Council on Systems Engineering. Vancouver, British Columbia,
Canada. July 26-30, 1998.

Mandanis, Greg. Software Project Management Kit for Dummies. IDG Books. Foster City, CA. 2000.

Maxwell, T. “Generic Design Science”, Engineering Department, Texas Tech University, Lubbock,

Texas, (Briefing slides and Lecture Notes: March, 2001).

Microsoft Corporation. Microsoft Project  . 1998.

Plsek, Paul E. Creativity, Innovation and Quality ASQ Quality Press. Milwaukee, Wisconsin 1997

pg. 186ff.

88

Project Management Institute. A Guide to a Project Management Body of Knowledge. Sylvia: PMI,

1996.

Ranky, P. Concurrent / Simultaneous Engineering (Methods, Tools & Case Studies), Biddles Limited,

The Book Manufacturers, Woodbridge Park, Guildford, Surrey, UK.  1994

Ranky, P. An Introduction to Total Quality Management & Control, and the ISO 9001 Quality

Standard, Media: CD ROM/Microsoft Word Document. CIMware Ltd.  1997 CIMware Ltd.
And CIMware UK&USA. http://www.cimwareukandusa.com

Ranky, P. An Introduction to Concurrent / Simultaneous Engineering, Media: CD ROM/Microsoft

Word Document. CIMware Ltd.  1997 CIMware Ltd. And CIMware UK&USA.
http://www.cimwareukandusa.com

Rational Software Corporation . Process Chart. 2000

Tanik, M. & Ertas, A Interdisciplinary Design and Process Science: A Discourse on Scientific

Method for the Integration Age , Journal of Integrated Design and Process Science , September,
Vol. 1 No. 1: pp. 76-94. 1997.

Vigilinx Corporation. The Power of Intelligence. Parsippany, NJ 07054. 2001

Warfield, J A Science of Generic Design: Managing Complexity Through Systems Design, Second

Edition, Iowa State University Press,  1994.

Warfield, John N. A Philosophy of Design, Presentation supplement, First World Conference on

Integrated Design and Process Technology. Society for Design and Process Science. Austin, TX.
December, 1995.

Warfield, John N. Understanding Design Science and Its Implementation. Presentation supplement.

First World Conference on Integrated Design and Process Technology. Society for Design and
Process Science. Austin, TX. December, 1995.

Warfield, John N and A. Roxana Cardenas. A Handbook of Interactive Management. Second Edition.

Iowa State University Press. 1994.

Watts, Jerry G. and Mar, Brian W. Important Skills and Knowledge to Include in Corporate Systems

Engineering Training Programs. White Paper Study with Boeing Defense and Space Group.
1996.

Wheeler, Ken. Defense Information Infrastructure Common Operating Environment Overview. White

Paper. Defense Information Systems Agency. 2001.

Whittington, B. “Electronic Light Table” Master’s Report for Texas Tech

89

APPENDIX A

NOMENCLATURE

ADRG ARC Digitized Raster Graphics

AKA Also Known As

ATE Automatic Terrain Extraction

BBT Black-Box Testing

BMP Bitmap

BPP Baseline Project Plan

BT Boundary Testing

CCB Change Control Board

CD Condition Directed Tasks

CFE Customer Furnished Equipment

CFI Customer Furnished Information

CM Configuration Management

CMDB Configuration Management Data Base

CMMS Configuration Management Maintenance System

CMP Change Management Plan

CMS Change Management System

CMST Configuration Management Standards

CT Concurrency Testing

CONOPS Concept Of Operations

COTS Commercial Off The Shelf

DDC Document and Data Control

DDS Detailed Design Specifications

DIICOE Defense Information Infrastructure Common Operating Environment

DPPDB Digital Point Positioning Data Base

DR Discrepancy Report

DTM Digital Terrain Model

EIA Electronic Industries Alliance

ELT Electronic Light Table

FAT Formal Acceptance Test

FF Failure Finding Tasks

90

FMEA Failure Mode and Effects Analysis

FS Functional Specifications

GBT Glass-Box Testing

GFE Government Furnished Equipment

GFI Government Furnished Information

GIF Graphical Interchange Format

GOTS Government Off The Shelf

HP Hewlett Packard

HTML Hyper Text Mark-up Language

ICT Integration and Compatibility Testing

IEEE Institute of Electrical and Electronics Engineers

IPB Intelligence Preparation of the Battlefield

IR Infrared

ISO International Organization for Standards

IT&V Integration, Test and Verification

JIT Just In Time

JPEG Joint Photographic Experts Group

LANDSAT Land Satellite

LSE Lead Systems Engineer

LTA Logic Tree Analysis

MIG Multi-Image Geopositioning

MIL-STD Military Standard

MP Mission Profile

NIMA National Imagery and Mapping Agency

NITF National Image Transmission Format

NSI Network Security Intelligence

NTM National Transmission Message

PDA Personal Digital Assistant i.e. Palm Pilot, etc.

PM Preventative Maintenance

PMBOK Program Management Body of Knowledge

PMS Preventative Maintenance System

PR Problem Report

PSD Project Scope Document

PT Performance Testing

91

QA Quality Assurance

QE Quality Engineer

QM Quality Management

RCM Reliability Centered Maintenance

RD Requirements Document

RFP Request For Proposal

ROI Region Of Interest

R&S Reconnaissance and Surveillance

RT Recovery Testing

RTF Run To Failure

SAR Synthetic Aperture Radar

SAT System Acceptance Test

SBS System Breakdown Structure

SE Systems Engineer

SEGL Systems Engineering Group Leads

SOS Statement Of Scope

SPOT Satellite Pour L’Observation de la Terre

SQA Software Quality Assurance

ST Security Testing

STT Stress Testing

SYERS Senior Year Electronic Reconnaissance System

TD Time Directed Tasks

TERCAT Terrain Categorization

TK Technical Knowledgebase

TIFF Tag(ged) Image File Format

TPM Technical Performance Measurement

TRD Technical Requirements Document

TSQ Triply-Structured-Quad

UTM Universal Transverse Mercator

WBS Work Breakdown Structure

WBT White Box Testing

XWD Window System window dumping utility (XWindows)

